我正在尝试实现一个模型,该模型将图像作为输入并给出26个数字的向量。我目前正在通过以下Matlab代码使用VGG-16:
analyzeNetwork(net);
NUM_OUTPUT = 26;
layers = net.Layers;
%output = fullyConnectedLayer(NUM_OUTPUT, ...
% 'Name','output_layer', ...
% 'WeightLearnRateFactor',10, ...
% 'BiasLearnRateFactor',10);
layers = [
layers(1:38)
fullyConnectedLayer(NUM_OUTPUT)
regressionLayer];
%layers(1:67) = freezeWeights(layers(1:67));
miniBatchSize = 5;
validationFrequency = floor(numel(YTrain)/miniBatchSize);
options = trainingOptions('sgdm',...
'InitialLearnRate',0.001, ...
'ValidationData',{XValidation,YValidation},...
'Plots','training-progress',...
'Verbose',false);
net = trainNetwork(XTrain,YTrain,layers,options);
YPred = predict(net,XValidation);
predictionError = YValidation - YPred;
thr = 10;
numCorrect = sum(abs(predictionError) < thr);
numImagesValidation = numel(YValidation);
accuracy = numCorrect/numImagesValidation;
rmse = sqrt(mean(predictionError.^2));
XTrain和YTrain的形状如下:
XTrain::224 224 3 140
火车: 26140
通过运行上面的代码(它是代码的一部分,而不是全部),我得到以下错误:
使用trainNetwork时出错(第170行) X和Y的观察数不一致。
如果有人可以帮助我找出问题所在,我将不胜感激,因为据我所知,这两个样本的数量相等,而其余维度不必相等。>
答案 0 :(得分:0)
将YTrain设置为140x26。
命名您的新图层,并将其设为layerGraph
回归很容易变得不稳定,因此如果您遇到一些困难,则会降低学习率或增加批量大小。
net = vgg16 ; % analyzeNetwork(net);
LAYERS_FREEZE_UNTIL=35;
LAYERS_COPY_UNTIL=38;
NUM_TRAIN_SAMPLES = size(YTrain,1);
NUM_OUTPUT = size(YTrain,2);
my_layers =layerGraph([
freezeWeights(net.Layers(1:LAYERS_FREEZE_UNTIL))
net.Layers(LAYERS_FREEZE_UNTIL+1:LAYERS_COPY_UNTIL)
fullyConnectedLayer(NUM_OUTPUT*2,'Name','my_fc1')
fullyConnectedLayer(NUM_OUTPUT,'Name','my_fc2')
regressionLayer('Name','my_regr')
]);
% figure; plot(my_layers), ylim([0.5,6.5])
% analyzeNetwork(my_layers);
MINI_BATCH_SIZE = 16;
options = trainingOptions('sgdm', ...
'MiniBatchSize',MINI_BATCH_SIZE, ...
'MaxEpochs',20, ...
'InitialLearnRate',1e-4, ...
'Shuffle','every-epoch', ...
'ValidationData',{XValidation,YValidation}, ...
'ValidationFrequency',floor(NUM_TRAIN_SAMPLES/MINI_BATCH_SIZE), ...
'Verbose',true, ...
'Plots','training-progress');
my_net = trainNetwork(XTrain,YTrain,my_layers,options);