让我们说我有一组带有日期和值的组和子组。
最后,我需要在窗口2中按组逐月评估值的滚动平均值(当前月的值是使用过去2个月来评估的。)
如果我将数据帧减少两个连续的groupby,我可以实现:
但这会减少我的数据。
我需要使用转换操作来完成所有操作,因此我可以将结果作为原始数据帧上的一列来获取。
让我们来看看这个虚拟数据:
values = [100, 100, 200, 200, 300, 300]
dates = ['2017-01-01', '2017-02-01',
'2018-01-01', '2018-02-01',
'2019-01-01', '2019-02-01']
df1 = pd.DataFrame({'date': dates, 'value': values})
df1['subgroup'] = 'subgroup1'
df2 = df1.copy()
df2['subgroup'] = 'subgroup2'
df2['value'] = df2.value *2
df_g1 = pd.concat([df1, df2], axis=0)
df_g1['group'] = 'group1'
df_g2 = df_g1.copy()
df_g2['group'] = 'group2'
df_g2['value'] = df_g2.value *2
df = pd.concat([df_g1, df_g2], axis=0)
df['date'] = pd.to_datetime(df.date)
现在进行第一个分组操作:
df_total_by_group = df.groupby(['group', 'date'], as_index=False)[['value']].sum()
df_total_by_group['month'] = df_total_by_group['date'].dt.month
现在滚动平均值:
def rolling_mean(serie):
return serie.shift(1).rolling(2, min_periods=1).mean()
df_total_by_group['month_rolling_mean_by_group'] = (df_total_by_group
.groupby(['group', 'month'])['value']
.transform(rolling_mean)
)
# display results
df_total_by_group.sort_values(by=['group', 'month'])
我在这里得到正确的结果, 但我需要将它们作为原始数据框中的一列。
我在这里迷路了。有什么建议吗?
答案 0 :(得分:2)
将DataFrame.merge
与列列表一起使用-此处缺少on
,因为两个数据帧的所有公共列通过相交合并:
df = df.merge(df_total_by_group[['group','date','month_rolling_mean_by_group']], how='left')
所以它的工作方式类似于:
df = df.merge(df_total_by_group[['group','date','month_rolling_mean_by_group']],
how='left',
on=['group','date'])
print (df)
date value subgroup group month_rolling_mean_by_group
0 2017-01-01 100 subgroup1 group1 NaN
1 2017-01-01 200 subgroup2 group1 NaN
2 2017-02-01 100 subgroup1 group1 NaN
3 2017-02-01 200 subgroup2 group1 NaN
4 2018-01-01 200 subgroup1 group1 300.0
5 2018-01-01 400 subgroup2 group1 300.0
6 2018-02-01 200 subgroup1 group1 300.0
7 2018-02-01 400 subgroup2 group1 300.0
8 2019-01-01 300 subgroup1 group1 450.0
9 2019-01-01 600 subgroup2 group1 450.0
10 2019-02-01 300 subgroup1 group1 450.0
11 2019-02-01 600 subgroup2 group1 450.0
12 2017-01-01 200 subgroup1 group2 NaN
13 2017-01-01 400 subgroup2 group2 NaN
14 2017-02-01 200 subgroup1 group2 NaN
15 2017-02-01 400 subgroup2 group2 NaN
16 2018-01-01 400 subgroup1 group2 600.0
17 2018-01-01 800 subgroup2 group2 600.0
18 2018-02-01 400 subgroup1 group2 600.0
19 2018-02-01 800 subgroup2 group2 600.0
20 2019-01-01 600 subgroup1 group2 900.0
21 2019-01-01 1200 subgroup2 group2 900.0
22 2019-02-01 600 subgroup1 group2 900.0
23 2019-02-01 1200 subgroup2 group2 900.0
如果将transform
用于第一个sum
,则其工作方式会不同:
df['value'] = df.groupby(['group', 'date'], as_index=False)['value'].transform('sum')
df['month'] = df['date'].dt.month
def rolling_mean(serie):
return serie.shift(1).rolling(2, min_periods=1).mean()
df['month_rolling_mean_by_group'] = (df.groupby(['group', 'month'])['value']
.transform(rolling_mean))
print (df)
date value subgroup group month month_rolling_mean_by_group
0 2017-01-01 300 subgroup1 group1 1 NaN
1 2017-02-01 300 subgroup1 group1 2 NaN
2 2018-01-01 600 subgroup1 group1 1 300.0
3 2018-02-01 600 subgroup1 group1 2 300.0
4 2019-01-01 900 subgroup1 group1 1 450.0
5 2019-02-01 900 subgroup1 group1 2 450.0
0 2017-01-01 300 subgroup2 group1 1 750.0
1 2017-02-01 300 subgroup2 group1 2 750.0
2 2018-01-01 600 subgroup2 group1 1 600.0
3 2018-02-01 600 subgroup2 group1 2 600.0
4 2019-01-01 900 subgroup2 group1 1 450.0
5 2019-02-01 900 subgroup2 group1 2 450.0
0 2017-01-01 600 subgroup1 group2 1 NaN
1 2017-02-01 600 subgroup1 group2 2 NaN
2 2018-01-01 1200 subgroup1 group2 1 600.0
3 2018-02-01 1200 subgroup1 group2 2 600.0
4 2019-01-01 1800 subgroup1 group2 1 900.0
5 2019-02-01 1800 subgroup1 group2 2 900.0
0 2017-01-01 600 subgroup2 group2 1 1500.0
1 2017-02-01 600 subgroup2 group2 2 1500.0
2 2018-01-01 1200 subgroup2 group2 1 1200.0
3 2018-02-01 1200 subgroup2 group2 2 1200.0
4 2019-01-01 1800 subgroup2 group2 1 900.0
5 2019-02-01 1800 subgroup2 group2 2 900.0
答案 1 :(得分:1)
我一直在做的事情是为我的聚合创建一个新的数据框架,然后重新加入原始数据框架。
pd.merge(df1, df2, on=['group, 'date'], how='left')