在交叉验证中使用Python管道错误

时间:2019-11-13 14:52:20

标签: python pipeline cross-validation

我有一个复杂的错误,无法解释,也无法弄清楚。显然,当简化模型拟合时,我的预处理管道有效,但是当我尝试进行交叉验证时,预处理管道失败。我无法破译错误,也无法理解问题。请帮忙。

预处理

我创建了一个管道,该管道对数据执行一些预处理任务。有用。包括一些客户变压器。这是代码。

from sklearn.pipeline import Pipeline
from sklearn.pipeline import FeatureUnion
from sklearn.base import BaseEstimator, TransformerMixin


class column_selector(BaseEstimator,TransformerMixin):

    def __init__(self, columns: list):
        self.cols = columns

    def fit(self,X,y=None):
        return self

    def transform(self, X, y=None):
        return X.loc[:, self.cols]


class dummy_creator(BaseEstimator,TransformerMixin):

    def __init__(self):

        pass

    def fit(self, X, y=None):
        # stateless transformer
        return self

    def transform(self, X):

        X_categorical_scaled_df = pd.get_dummies(X)
        return X_categorical_scaled_df 


class DFStandardScaler(BaseEstimator,TransformerMixin):

    def __init__(self):

        self.ss = None


    def fit(self,X,y=None):

        self.ss = StandardScaler().fit(X)
        return self

    def transform(self, X):

        Xss = self.ss.transform(X)
        X_continuous_scaled_df = pd.DataFrame(Xss, index=X.index, columns=X.columns)
        return X_continuous_scaled_df


pipeline_categorical = Pipeline(steps = [
            ('column_selector', column_selector(categorical_features)),
            ('create_dummies', dummy_creator())
           ])


pipeline_continuous = Pipeline(steps = [
            ('column_selector', column_selector(numeric_features)),
            ('scaler',DFStandardScaler())
           ])

feature_union = FeatureUnion([('cat', pipeline_categorical),
                      ('cont', pipeline_continuous)])

如果我fit_transform管道中,我会得到很好的结果:

X_train_enc = feature_union.fit_transform(X_train)

X_train_enc

>>>array([[ 0.        ,  1.        ,  0.        , ..., -0.05977797,
        -0.21011127, -0.24460191],
       [ 1.        ,  0.        ,  0.        , ..., -0.68765273,
        -0.00946558, -0.82457039],
       [ 0.        ,  1.        ,  0.        , ..., -1.06122696,

没有交叉验证的模型

如果我现在使用上述预处理管道和模型(在本例中为线性回归)建立管道,那么我仍然会获得良好的结果(仅显示如下所示的预测值即可正确预处理数据并进行模型拟合):

from sklearn.pipeline import make_pipeline

pipe = make_pipeline(feature_union, LinearRegression())

pipe.fit(X_train, y_train)
pipe.predict(X_validation)

>>>array([ 9.17773438,  9.38226318,  8.35693359, 10.62176514, 11.29095459,
        7.45025635,  6.03497314, 10.04321289, 10.57568359,  9.86663818,
        7.01202393,  8.08374023,  8.80700684, 10.80102539, 12.32678223,
        6.7588501 , 10.44604492,  6.86547852,  9.20465088,  9.04406738,

具有交叉验证的模型

现在,我尝试使用交叉验证来测试相同的模型。您会注意到,我将管道放入了一个列表(“管道”)中,并在循环中进行了交叉验证。这是因为我打算使用不同的模型创建与此类似的管道列表并遍历它们,但这超出了我的讨论范围(但以防万一,您可能想知道为什么我用这种方式进行编码)

seed = 7     
pipelines = []
pipelines.append(('ScaledLR',Pipeline([('Preprocess', feature_union),('LR', LinearRegression())])))

results=[]
names=[]
scoring='neg_mean_squared_error'

for name, model in pipelines:

    kfold=KFold(n_splits=10, random_state=7)
    cv_results = cross_val_score(model, X_train, y_train, cv=kfold, scoring=scoring)
    results.append(cv_results)
    names.append(name)
    print("%s %f (%r)" % (name, cv_results.mean(), cv_results.std()))

然后出现以下错误:

---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
~\Anaconda2\envs\py36\lib\site-packages\pandas\core\indexes\base.py in get_loc(self, key, method, tolerance)
   2655             try:
-> 2656                 return self._engine.get_loc(key)
   2657             except KeyError:

pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc()

pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc()

pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()

pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()

KeyError: None

During handling of the above exception, another exception occurred:

KeyError                                  Traceback (most recent call last)
<ipython-input-70-1aa4a50ac843> in <module>
     29 
     30     kfold=KFold(n_splits=10, random_state=7)
---> 31     cv_results = cross_val_score(model, X_train, y_train, cv=kfold, scoring=scoring)
     32     results.append(cv_results)
     33     names.append(name)

~\Anaconda2\envs\py36\lib\site-packages\sklearn\model_selection\_validation.py in cross_val_score(estimator, X, y, groups, scoring, cv, n_jobs, verbose, fit_params, pre_dispatch, error_score)
    400                                 fit_params=fit_params,
    401                                 pre_dispatch=pre_dispatch,
--> 402                                 error_score=error_score)
    403     return cv_results['test_score']
    404 

~\Anaconda2\envs\py36\lib\site-packages\sklearn\model_selection\_validation.py in cross_validate(estimator, X, y, groups, scoring, cv, n_jobs, verbose, fit_params, pre_dispatch, return_train_score, return_estimator, error_score)
    238             return_times=True, return_estimator=return_estimator,
    239             error_score=error_score)
--> 240         for train, test in cv.split(X, y, groups))
    241 
    242     zipped_scores = list(zip(*scores))

~\Anaconda2\envs\py36\lib\site-packages\sklearn\externals\joblib\parallel.py in __call__(self, iterable)
    915             # remaining jobs.
    916             self._iterating = False
--> 917             if self.dispatch_one_batch(iterator):
    918                 self._iterating = self._original_iterator is not None
    919 

~\Anaconda2\envs\py36\lib\site-packages\sklearn\externals\joblib\parallel.py in dispatch_one_batch(self, iterator)
    757                 return False
    758             else:
--> 759                 self._dispatch(tasks)
    760                 return True
    761 

~\Anaconda2\envs\py36\lib\site-packages\sklearn\externals\joblib\parallel.py in _dispatch(self, batch)
    714         with self._lock:
    715             job_idx = len(self._jobs)
--> 716             job = self._backend.apply_async(batch, callback=cb)
    717             # A job can complete so quickly than its callback is
    718             # called before we get here, causing self._jobs to

~\Anaconda2\envs\py36\lib\site-packages\sklearn\externals\joblib\_parallel_backends.py in apply_async(self, func, callback)
    180     def apply_async(self, func, callback=None):
    181         """Schedule a func to be run"""
--> 182         result = ImmediateResult(func)
    183         if callback:
    184             callback(result)

~\Anaconda2\envs\py36\lib\site-packages\sklearn\externals\joblib\_parallel_backends.py in __init__(self, batch)
    547         # Don't delay the application, to avoid keeping the input
    548         # arguments in memory
--> 549         self.results = batch()
    550 
    551     def get(self):

~\Anaconda2\envs\py36\lib\site-packages\sklearn\externals\joblib\parallel.py in __call__(self)
    223         with parallel_backend(self._backend, n_jobs=self._n_jobs):
    224             return [func(*args, **kwargs)
--> 225                     for func, args, kwargs in self.items]
    226 
    227     def __len__(self):

~\Anaconda2\envs\py36\lib\site-packages\sklearn\externals\joblib\parallel.py in <listcomp>(.0)
    223         with parallel_backend(self._backend, n_jobs=self._n_jobs):
    224             return [func(*args, **kwargs)
--> 225                     for func, args, kwargs in self.items]
    226 
    227     def __len__(self):

~\Anaconda2\envs\py36\lib\site-packages\sklearn\model_selection\_validation.py in _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, return_train_score, return_parameters, return_n_test_samples, return_times, return_estimator, error_score)
    526             estimator.fit(X_train, **fit_params)
    527         else:
--> 528             estimator.fit(X_train, y_train, **fit_params)
    529 
    530     except Exception as e:

~\Anaconda2\envs\py36\lib\site-packages\sklearn\pipeline.py in fit(self, X, y, **fit_params)
    263             This estimator
    264         """
--> 265         Xt, fit_params = self._fit(X, y, **fit_params)
    266         if self._final_estimator is not None:
    267             self._final_estimator.fit(Xt, y, **fit_params)

~\Anaconda2\envs\py36\lib\site-packages\sklearn\pipeline.py in _fit(self, X, y, **fit_params)
    228                 Xt, fitted_transformer = fit_transform_one_cached(
    229                     cloned_transformer, Xt, y, None,
--> 230                     **fit_params_steps[name])
    231                 # Replace the transformer of the step with the fitted
    232                 # transformer. This is necessary when loading the transformer

~\Anaconda2\envs\py36\lib\site-packages\sklearn\externals\joblib\memory.py in __call__(self, *args, **kwargs)
    340 
    341     def __call__(self, *args, **kwargs):
--> 342         return self.func(*args, **kwargs)
    343 
    344     def call_and_shelve(self, *args, **kwargs):

~\Anaconda2\envs\py36\lib\site-packages\sklearn\pipeline.py in _fit_transform_one(transformer, X, y, weight, **fit_params)
    612 def _fit_transform_one(transformer, X, y, weight, **fit_params):
    613     if hasattr(transformer, 'fit_transform'):
--> 614         res = transformer.fit_transform(X, y, **fit_params)
    615     else:
    616         res = transformer.fit(X, y, **fit_params).transform(X)

~\Anaconda2\envs\py36\lib\site-packages\sklearn\pipeline.py in fit_transform(self, X, y, **fit_params)
    791             delayed(_fit_transform_one)(trans, X, y, weight,
    792                                         **fit_params)
--> 793             for name, trans, weight in self._iter())
    794 
    795         if not result:

~\Anaconda2\envs\py36\lib\site-packages\sklearn\externals\joblib\parallel.py in __call__(self, iterable)
    915             # remaining jobs.
    916             self._iterating = False
--> 917             if self.dispatch_one_batch(iterator):
    918                 self._iterating = self._original_iterator is not None
    919 

~\Anaconda2\envs\py36\lib\site-packages\sklearn\externals\joblib\parallel.py in dispatch_one_batch(self, iterator)
    757                 return False
    758             else:
--> 759                 self._dispatch(tasks)
    760                 return True
    761 

~\Anaconda2\envs\py36\lib\site-packages\sklearn\externals\joblib\parallel.py in _dispatch(self, batch)
    714         with self._lock:
    715             job_idx = len(self._jobs)
--> 716             job = self._backend.apply_async(batch, callback=cb)
    717             # A job can complete so quickly than its callback is
    718             # called before we get here, causing self._jobs to

~\Anaconda2\envs\py36\lib\site-packages\sklearn\externals\joblib\_parallel_backends.py in apply_async(self, func, callback)
    180     def apply_async(self, func, callback=None):
    181         """Schedule a func to be run"""
--> 182         result = ImmediateResult(func)
    183         if callback:
    184             callback(result)

~\Anaconda2\envs\py36\lib\site-packages\sklearn\externals\joblib\_parallel_backends.py in __init__(self, batch)
    547         # Don't delay the application, to avoid keeping the input
    548         # arguments in memory
--> 549         self.results = batch()
    550 
    551     def get(self):

~\Anaconda2\envs\py36\lib\site-packages\sklearn\externals\joblib\parallel.py in __call__(self)
    223         with parallel_backend(self._backend, n_jobs=self._n_jobs):
    224             return [func(*args, **kwargs)
--> 225                     for func, args, kwargs in self.items]
    226 
    227     def __len__(self):

~\Anaconda2\envs\py36\lib\site-packages\sklearn\externals\joblib\parallel.py in <listcomp>(.0)
    223         with parallel_backend(self._backend, n_jobs=self._n_jobs):
    224             return [func(*args, **kwargs)
--> 225                     for func, args, kwargs in self.items]
    226 
    227     def __len__(self):

~\Anaconda2\envs\py36\lib\site-packages\sklearn\pipeline.py in _fit_transform_one(transformer, X, y, weight, **fit_params)
    612 def _fit_transform_one(transformer, X, y, weight, **fit_params):
    613     if hasattr(transformer, 'fit_transform'):
--> 614         res = transformer.fit_transform(X, y, **fit_params)
    615     else:
    616         res = transformer.fit(X, y, **fit_params).transform(X)

~\Anaconda2\envs\py36\lib\site-packages\sklearn\pipeline.py in fit_transform(self, X, y, **fit_params)
    296         """
    297         last_step = self._final_estimator
--> 298         Xt, fit_params = self._fit(X, y, **fit_params)
    299         if hasattr(last_step, 'fit_transform'):
    300             return last_step.fit_transform(Xt, y, **fit_params)

~\Anaconda2\envs\py36\lib\site-packages\sklearn\pipeline.py in _fit(self, X, y, **fit_params)
    228                 Xt, fitted_transformer = fit_transform_one_cached(
    229                     cloned_transformer, Xt, y, None,
--> 230                     **fit_params_steps[name])
    231                 # Replace the transformer of the step with the fitted
    232                 # transformer. This is necessary when loading the transformer

~\Anaconda2\envs\py36\lib\site-packages\sklearn\externals\joblib\memory.py in __call__(self, *args, **kwargs)
    340 
    341     def __call__(self, *args, **kwargs):
--> 342         return self.func(*args, **kwargs)
    343 
    344     def call_and_shelve(self, *args, **kwargs):

~\Anaconda2\envs\py36\lib\site-packages\sklearn\pipeline.py in _fit_transform_one(transformer, X, y, weight, **fit_params)
    612 def _fit_transform_one(transformer, X, y, weight, **fit_params):
    613     if hasattr(transformer, 'fit_transform'):
--> 614         res = transformer.fit_transform(X, y, **fit_params)
    615     else:
    616         res = transformer.fit(X, y, **fit_params).transform(X)

~\Anaconda2\envs\py36\lib\site-packages\sklearn\base.py in fit_transform(self, X, y, **fit_params)
    463         else:
    464             # fit method of arity 2 (supervised transformation)
--> 465             return self.fit(X, y, **fit_params).transform(X)
    466 
    467 

<ipython-input-24-666c2228e73d> in transform(self, X, y)
     13 
     14     def transform(self, X, y=None):
---> 15         return X.loc[:, self.cols]
     16 
     17 

~\Anaconda2\envs\py36\lib\site-packages\pandas\core\indexing.py in __getitem__(self, key)
   1492             except (KeyError, IndexError, AttributeError):
   1493                 pass
-> 1494             return self._getitem_tuple(key)
   1495         else:
   1496             # we by definition only have the 0th axis

~\Anaconda2\envs\py36\lib\site-packages\pandas\core\indexing.py in _getitem_tuple(self, tup)
    866     def _getitem_tuple(self, tup):
    867         try:
--> 868             return self._getitem_lowerdim(tup)
    869         except IndexingError:
    870             pass

~\Anaconda2\envs\py36\lib\site-packages\pandas\core\indexing.py in _getitem_lowerdim(self, tup)
    986         for i, key in enumerate(tup):
    987             if is_label_like(key) or isinstance(key, tuple):
--> 988                 section = self._getitem_axis(key, axis=i)
    989 
    990                 # we have yielded a scalar ?

~\Anaconda2\envs\py36\lib\site-packages\pandas\core\indexing.py in _getitem_axis(self, key, axis)
   1911         # fall thru to straight lookup
   1912         self._validate_key(key, axis)
-> 1913         return self._get_label(key, axis=axis)
   1914 
   1915 

~\Anaconda2\envs\py36\lib\site-packages\pandas\core\indexing.py in _get_label(self, label, axis)
    139             raise IndexingError('no slices here, handle elsewhere')
    140 
--> 141         return self.obj._xs(label, axis=axis)
    142 
    143     def _get_loc(self, key, axis=None):

~\Anaconda2\envs\py36\lib\site-packages\pandas\core\generic.py in xs(self, key, axis, level, drop_level)
   3574 
   3575         if axis == 1:
-> 3576             return self[key]
   3577 
   3578         self._consolidate_inplace()

~\Anaconda2\envs\py36\lib\site-packages\pandas\core\frame.py in __getitem__(self, key)
   2925             if self.columns.nlevels > 1:
   2926                 return self._getitem_multilevel(key)
-> 2927             indexer = self.columns.get_loc(key)
   2928             if is_integer(indexer):
   2929                 indexer = [indexer]

~\Anaconda2\envs\py36\lib\site-packages\pandas\core\indexes\base.py in get_loc(self, key, method, tolerance)
   2656                 return self._engine.get_loc(key)
   2657             except KeyError:
-> 2658                 return self._engine.get_loc(self._maybe_cast_indexer(key))
   2659         indexer = self.get_indexer([key], method=method, tolerance=tolerance)
   2660         if indexer.ndim > 1 or indexer.size > 1:

pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc()

pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc()

pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()

pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()

KeyError: None

该错误似乎位于预处理功能部件中-但我不确定确切的位置或原因。我相信它可能在pd.get_dummies()函数周围的create_dummies类中,但不确定。

有人可以告知发生了什么事吗?

2 个答案:

答案 0 :(得分:1)

我知道这是一个老问题,但是当我遇到同样的问题(代码在没有交叉验证的情况下工作并因此失败)时,它是第一个出现的问题。

失败的原因是您的自定义估算器 column_selector 的签名与属性不匹配。来自 sklearn documentation 关于开发估计器:

<块引用>

此外,__init__ 接受的每个关键字参数都应该对应于实例上的一个属性。在进行模型选择时,Scikit-learn 依赖于此找到要在估计器上设置的相关属性。

如果您将其更改为:

应该可以正常工作
class column_selector(BaseEstimator,TransformerMixin):

    def __init__(self, columns: list):
        self.columns = columns

    def fit(self,X,y=None):
        return self

    def transform(self, X, y=None):
        return X.loc[:, self.columns]

答案 1 :(得分:0)

经过一天半的脑力衰竭,我创建了一个解决方法。

我从包含特征联合和模型的最终管道中删除了预处理特征联合。我在每个管道循环内的训练集上运行功能并集,然后在交叉编码中调用模型,同时输入编码/转换后的变量。这是代码。

from sklearn.pipeline import Pipeline

seed = 7 

#prepare Models

pipelines = []

pipelines.append(('ScaledLR',Pipeline([('LR',LinearRegression())])))

#evaluate each model

results=[]
names=[]
scoring='neg_mean_squared_error'
for name, model in pipelines:

    X_train_enc = feature_union.fit_transform(X_train)
    y_train = Y_train.values

    kfold=KFold(n_splits=10, random_state=7)
    cv_results = cross_val_score(model, X_train_enc, y_train, cv=kfold, scoring=scoring)
    results.append(cv_results)
    names.append(name)
    print("%s %f (%r)" % (name, cv_results.mean(),cv_results.std()))

当然,从技术上讲,我不需要简单调用模型的最终管道。但是,由于此工作仍在进行中,因此我暂时保留,我可能会再进行一些其他操作。