我想在Keras / Tensorflow中创建一个具有多个输出的神经网络。我想创建一个将所有输出都考虑在内的SINGLE损失函数,并据此计算损失。我需要这样做,因为输出彼此相关。我该如何实现?我读到有关将所有输出串联到单个密集层,然后计算该层的损耗的信息。有没有更便捷的方法来实现多输出的单一损失?
我在想类似的东西:
var config = {
type: Phaser.AUTO,
parent: 'phaser-example',
width: 800,
height: 600,
scene: {
create: create,
update: update
}
};
var keySpace;
var keyBackspace;
var textEntry;
var game = new Phaser.Game(config);
function create ()
{
this.add.text(10, 10, 'Enter your name:', { font: '32px Courier', fill: '#ffffff' });
textEntry = this.add.text(10, 50, '', { font: '32px Courier', fill: '#ffff00' });
// keys = this.input.keyboard.addKeys('A,B,C');
keySpace = this.input.keyboard.addKey(Phaser.Input.Keyboard.KeyCodes.SPACE);
keyBackspace = this.input.keyboard.addKey(Phaser.Input.Keyboard.KeyCodes.BACKSPACE);
this.input.keyboard.on('keydown', function (event) {
if (event.keyCode === 8 && textEntry.text.length > 0)
{
textEntry.text = textEntry.text.substr(0, textEntry.text.length - 1);
}
else if (event.keyCode === 32 || (event.keyCode >= 48 && event.keyCode < 90))
{
textEntry.text += event.key;
}
console.log(event);
});
}
function update ()
{
}
else if (event.keyCode === 38 )
{
dosomethingthirtyeight();
showPanel();
}
else if (event.keyCode === 40 )
{
dosomethingfortyeight();
showPanel();
}
和def my_custom_loss(y_true_0, ..., y_true_n, y_pred_0, ..., y_pred_n):
return something
应该是n个输出(密集)层的真实/预测输出。
答案 0 :(得分:0)
您可以根据变量的性质实现损失函数。一些标准的方法如下:
如果它们只是数字(而不是概率): MSE损失
def my_custom_loss(y_true_0, ..., y_true_n, y_pred_0, ..., y_true_n):
y_true = tf.stack([y_true_0,...y_true_n], axis=0)
y_pred = tf.stack([y_pred_0,...y_pred_n], axis=0)
something = tf.losses.mean_squared_error(y_true, y_pred)
return something
OR 绝对差额损失
def my_custom_loss(y_true_0, ..., y_true_n, y_pred_0, ..., y_true_n):
y_true = tf.stack([y_true_0,...y_true_n], axis=0)
y_pred = tf.stack([y_pred_0,...y_pred_n], axis=0)
something = tf.losses.absolute_difference(y_true, y_pred)
return something
如果它们是一个热门向量(有效概率):
def my_custom_loss(y_true_0, ..., y_true_n, y_pred_0, ..., y_true_n):
y_true = tf.stack([y_true_0,...y_true_n], axis=0)
y_pred = tf.stack([y_pred_0,...y_pred_n], axis=0)
something = tf.reduce_mean(tf.keras.losses.binary_crossentropy(y_true, y_pred))
return something
如果它们是零和一(无效的概率):
def my_custom_loss(y_true_0, ..., y_true_n, y_pred_0, ..., y_true_n):
y_true = tf.stack([y_true_0,...y_true_n], axis=0)
y_pred = tf.stack([y_pred_0,...y_pred_n], axis=0)
something = tf.reduce_mean(tf.keras.losses.binary_crossentropy(y_true, y_pred), from_logits=True)
return something
不仅限于这些。您可以创建自己的损失函数,只要它是可微的。