使用fit_generator时出现“ ValueError:空训练数据”

时间:2019-11-12 15:35:58

标签: python tensorflow keras generator

我正在尝试使用.fit_generator训练自动编码器。我为此编写了自己的生成器,但是在调用VAE.fit_generator(generator=training_generator, validation_data=testing_generator)时发生以下错误:

  

ValueError:空的训练数据

这是我的生成器的代码:

class DataGenerator(tf.keras.utils.Sequence):
    'Generates data for Keras'
    def __init__(self, list_IDs, data_dir, batch_size=32, dim=(16,9216), shuffle=True, n_music=3, gen_dir="./generated/", epoch=0):
        'Initialization'
        self.dim = dim
        self.batch_size = batch_size
        self.list_IDs = list_IDs
        self.data_dir = data_dir
        self.shuffle = shuffle
        self.n_music = n_music
        self.gen_dir = gen_dir
        self.epoch = epoch
        self.on_epoch_end()

    def __len__(self):
        'Denotes the number of batches per epoch'
        return int(np.floor(len(self.list_IDs) / self.batch_size))

    def __getitem__(self, index):
        'Generate one batch of data'
        # Generate indexes of the batch
        indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]

        # Find list of IDs
        list_IDs_temp = [self.list_IDs[k] for k in indexes]

        # Generate data
        X = self.__data_generation(list_IDs_temp)

        return X

    def on_epoch_end(self):
        'Updates indexes after each epoch'
        self.indexes = np.arange(len(self.list_IDs))
        if self.shuffle == True:
            np.random.shuffle(self.indexes)
            pass
        self.epoch += 1
        sample = decoder(np.random.normal(size=[self.n_music, 120]))
        outputs_exp = np.expand_dims(sample, 0)
        outputs_exp = np.expand_dims(outputs_exp, 0)
        outputs_rsp = np.reshape(outputs_exp, (-1, 96, 16*96))
        for song in range(outputs_rsp.shape[0]):
            plt.imsave(self.gen_dir + str(self.epoch) + ".png", outputs_rsp[song])

    def __data_generation(self, list_IDs_temp):
        'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)
        # Initialization
        X = np.empty((self.batch_size, *self.dim))

        # Generate data
        for i, ID in enumerate(list_IDs_temp):
            # Store sample
            X[i] = np.load(self.data_dir + ID + '.npy')


        return X

我按照this指南创建了生成器。

0 个答案:

没有答案