我正在寻找plyr::mapvalues
中data.table
的可读替代形式。
例如,在plyr::mapvalues
中,如果我想将carb
中的mtcars
的值更改为type1, type2, type3
,我将执行以下操作:
library(tidyverse)
mtcars %>%
mutate(carb = plyr::mapvalues(
carb,
from = c("1", "2", "3", "4", "6", "8"),
to = c("type1", "type1", "type2", "type2", "type3", "type3")))
要在data.table
中获得相同的结果,我会这样做,但这似乎不是常规方法:
library(data.table)
dt <- data.table(mtcars)
dt$carb <- as.character(dt$carb)
dt[which(carb %in% c("1", "2")),
carb := "type1"]
dt[which(carb %in% c("3", "4")),
carb := "type2"]
dt[which(carb %in% c("6", "8")),
carb := "type3"]
是否可以在一个条件(dt[...]
)中更改所有值?
答案 0 :(得分:5)
使用base::factor
是最简单的方法:
library(data.table)
setDT(mtcars)[, carb := factor(carb,
levels = c("1", "2", "3",
"4", "6", "8"),
labels = c("type1", "type1",
"type2", "type2",
"type3", "type3"))][]
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> 1: 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 type2
#> 2: 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 type2
#> 3: 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 type1
#> 4: 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 type1
#> 5: 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 type1
#> 6: 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 type1
#> 7: 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 type2
#> 8: 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 type1
#> 9: 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 type1
## ...
答案 1 :(得分:5)
令我惊讶的是,没有人建议将其作为联接来进行:
dt[
.(carb=c("1","2","3","4","6","8"), type=rep(c("type1","type2","type3"),each=2)),
on="carb",
type := i.type
]
它也很容易扩展,然后可以匹配多个变量。
答案 2 :(得分:3)
使用match
dt[, carb := rep(paste0("Type", 1:3), each = 2)[match(carb, c("1","2","3","4","6","8"))]]
# mpg cyl disp hp drat wt qsec vs am gear carb
#1: 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 Type2
#2: 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 Type2
#3: 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 Type1
#4: 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 Type1
#5: 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 Type1
#6: 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 Type1
#7: 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 Type2
#8: 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 Type1
#9: 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 Type1
#10: 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 Type2
#...
答案 3 :(得分:2)
了解OP正在寻求可读性,但它是主观的,因此为ref的公共Wiki增加了一些时间:
计时代码:
library(data.table)
set.seed(0L)
from = c("1", "2", "3", "4", "6", "8")
to = c("type1", "type1", "type2", "type2", "type3", "type3")
nr <- 1e7
DT <- data.table(carb=sample(from, nr, TRUE))
DT_match <- copy(DT)
DT_factor <- copy(DT)
DT_updjoin <- copy(DT)
DT_updjoin_setidx <- copy(DT)
DT_plyr <- copy(DT)
mtd_updjoin <- function() {
DT_updjoin[.(carb=from, type=to), on="carb", type := i.type]
}
mtd_updjoin_setidx <- function() {
setindex(DT_updjoin_setidx, carb)
d <- data.table(carb=from, type=to, key="carb")
DT_updjoin_setidx[d, on=.(carb), type := i.type]
}
mtd_match <- function() {
DT_match[, carb := to[match(carb, from)]]
}
mtd_factor <- function() {
DT_factor[, carb := factor(carb, levels=from, labels=to)]
}
mtd_plyr <- function() {
DT_plyr[, carb2 := plyr::mapvalues(carb, from = c("1", "2", "3", "4", "6", "8"), to = c("type1", "type1", "type2", "type2", "type3", "type3"))]
}
bench::mark(mtd_factor(), mtd_match(), mtd_updjoin(), mtd_updjoin_setidx(), mtd_plyr(), check=FALSE)
时间:
# A tibble: 5 x 13
expression min median `itr/sec` mem_alloc `gc/sec` n_itr n_gc total_time result memory time gc
<bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl> <int> <dbl> <bch:tm> <list> <list> <list> <list>
1 mtd_factor() 542.02ms 542.02ms 1.84 305MB 1.84 1 1 542.02ms <df[,1] [1~ <df[,3] ~ <bch:~ <tibbl~
2 mtd_match() 256.3ms 291.68ms 3.43 191MB 1.71 2 1 583.36ms <df[,1] [1~ <df[,3] ~ <bch:~ <tibbl~
3 mtd_updjoin() 1.4s 1.4s 0.714 382MB 0.714 1 1 1.4s <df[,2] [1~ <df[,3] ~ <bch:~ <tibbl~
4 mtd_updjoin_setidx() 886.78ms 886.78ms 1.13 420MB 0 1 0 886.78ms <df[,2] [1~ <df[,3] ~ <bch:~ <tibbl~
5 mtd_plyr() 1.15s 1.15s 0.866 815MB 0.866 1 1 1.15s <df[,2] [1~ <df[,3] ~ <bch:~ <tibbl~
答案 4 :(得分:1)
[更新]我不知道为什么有些人不建议删除which()
,但这不是您要想到的:
library(tidyverse)
library(data.table)
dt<-as.data.table(mtcars)
dt[,carb:=as.character(carb)]
dt[carb %in% c("1", "2"),carb:="type1"]
dt[carb %in% c("3", "4"),carb:="type2"]
dt[carb %in% c("6", "8"),carb:="type3"]