我对AWS Glue非常陌生。我正在做一个小项目,要问的是从S3存储桶中读取文件,将其转置并将其加载到mysql表中。 S3存储桶中的源数据如下所示:
费用,数据,分钟,名称,sms,id,类别 5,1000,200,产品1,500,p1,服务
目标表结构为 产品ID,参数,值
我希望目标表具有以下值
p1,费用5
P1,数据,1000
我能够用ID和Value加载目标表。但是我无法填充参数列。此列不在输入数据中,我想根据我要填充的列值来填充字符串。
这是我用于成本的代码。
import sys
from awsglue.transforms import *
from awsglue.utils import getResolvedOptions
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job
## @params: [JOB_NAME]
args = getResolvedOptions(sys.argv, ['JOB_NAME'])
sc = SparkContext()
glueContext = GlueContext(sc)
spark = glueContext.spark_session
job = Job(glueContext)
job.init(args['JOB_NAME'], args)
## @type: DataSource
## @args: [database = "mainclouddb", table_name = "s3product", transformation_ctx = "datasource0"]
## @return: datasource0
## @inputs: []
datasource0 = glueContext.create_dynamic_frame.from_catalog(database = "mainclouddb", table_name = "s3product", transformation_ctx = "datasource0")
## @type: ApplyMapping
## @args: [mapping = [("cost", "long", "value", "int"), ("id", "string", "product_id", "string")], transformation_ctx = "applymapping1"]
## @return: applymapping1
## @inputs: [frame = datasource0]
applymapping1 = ApplyMapping.apply(frame = datasource0, mappings = [("cost", "long", "value", "int"), ("id", "string", "product_id", "string")], transformation_ctx = "applymapping1")
## @type: SelectFields
## @args: [paths = ["product_id", "parameter", "value"], transformation_ctx = "selectfields2"]
## @return: selectfields2
## @inputs: [frame = applymapping1]
selectfields2 = SelectFields.apply(frame = applymapping1, paths = ["product_id", "parameter", "value"], transformation_ctx = "selectfields2")
## @type: ResolveChoice
## @args: [choice = "MATCH_CATALOG", database = "mainclouddb", table_name = "mysqlmaincloud_product_parameter_mapping", transformation_ctx = "resolvechoice3"]
## @return: resolvechoice3
## @inputs: [frame = selectfields2]
resolvechoice3 = ResolveChoice.apply(frame = selectfields2, choice = "MATCH_CATALOG", database = "mainclouddb", table_name = "mysqlmaincloud_product_parameter_mapping", transformation_ctx = "resolvechoice3")
## @type: ResolveChoice
## @args: [choice = "make_cols", transformation_ctx = "resolvechoice4"]
## @return: resolvechoice4
## @inputs: [frame = resolvechoice3]
resolvechoice4 = ResolveChoice.apply(frame = resolvechoice3, choice = "make_cols", transformation_ctx = "resolvechoice4")
## @type: DataSink
## @args: [database = "mainclouddb", table_name = "mysqlmaincloud_product_parameter_mapping", transformation_ctx = "datasink5"]
## @return: datasink5
## @inputs: [frame = resolvechoice4]
datasink5 = glueContext.write_dynamic_frame.from_catalog(frame = resolvechoice4, database = "mainclouddb", table_name = "mysqlmaincloud_product_parameter_mapping", transformation_ctx = "datasink5")
job.commit()
有人可以帮助我将此新列添加到我的数据框中,以便使其在表格中可用吗?
谢谢
答案 0 :(得分:0)
对于较小的datsframe,您可以执行以下操作
"cmake.cacheInit": null,
datasource0 = datasource0.toDF()
from pyspark.sql.functions import udf
getNewValues = udf(lambda val: val+1) # you can do what you need to do here instead of val+1
datasource0 = datasource0.withColumn('New_Col_Name', getNewValues(col('some_existing_col'))
问题在于,当您拥有大型数据集时,toDF()的操作非常昂贵!