您好,我正在尝试创建用于预测值的lstm:(
但我认为我对使用角膜维数的理解有局限性
我需要帮助
我的代码如下
train = train.to_numpy()
train = train.reshape(train.shape[0], 1, train.shape[2])
target_load = target_load.iloc[:].values
np.shape(train), np.shape(target_load)
dataShapes for train and answer
from keras import optimizers
from keras.models import Model, Sequential
from keras.layers import Input, Dense, LSTM, Bidirectional, Dropout
xInput = Input(shape=(1,7))
xLstm_1 = LSTM(128, return_sequences=True)(xInput)
xLstm_1 = Dropout(0.2)(xLstm_1)
xLstm_2 = Bidirectional(LSTM(128))(xLstm_1)
xOutput = Dense(1)(xLstm_2)
ada = optimizers.Adam(lr=0.001)
model = Model(train, target_load)
model.compile(loss='mean_squared_error', optimizer=ada)
model.summary()
答案 0 :(得分:0)
检查TensorFlow的API:https://www.tensorflow.org/api_docs/python/tf/keras/Model
必须使用符号张量实例化模型对象:
tf.keras.Model(inputs=inputs, outputs=outputs)`
在您的情况下是
model = Model(inputs = xInput, outputs = xOutput)