我用批处理归一化实现了一个模型:
class FFNet(torch.nn.Module):
def __init__(self, D_in, H_1, H_2, D_out):
super(FFNet, self).__init__()
self.linear1 = torch.nn.Linear(D_in, H_1)
self.linear2 = torch.nn.Linear(H_1, H_2)
self.bn2 = torch.nn.BatchNorm1d(H_2)
self.linear4 = torch.nn.Linear(H_2, D_out)
def forward(self, x):
h_relu_1=F.relu(self.linear1(x))
h_relu_2=F.relu(self.bn2(self.linear2(h_relu_1)))
y_pred=self.linear4(h_relu_2)
return y_pred
我还编写了训练循环:
for epoch in range(epoches):
running_loss = 0.0
cnt = 0
for i, data in enumerate(train_data, 0):
local_X, local_y = data
y_pred = model.forward(local_X)
loss = criterion(y_pred, local_y)
optimizer.zero_grad()
#loss = criterion(y_pred, Y_local_output)
loss.backward() # back props
optimizer.step()
running_loss = running_loss + loss.item()
cnt+=1
Validation_loss = 0.0
cnt2 = 0
# Validation
for i, data in enumerate(validation_data, 0):
Val_X, Val_Y = data
y_pred = model.forward(Val_X)
loss=criterion(y_pred, Val_Y)
Validation_loss = Validation_loss + loss.item()
cnt2+=1
我有两个问题:
1.无需在此代码中使用model.train()?
2.如何使用eval
评估此模型?我有一个数据样本,其大小为(1xD_in),并且批处理大小大于1。使用以下代码时,出现错误:
test_single = torch.tensor([aa, ab, ac, ad, ae, af, ag])
test_single = test_single.unsqueeze(0)
model.eval()
[bb,cc] = model.forward(test_single)
错误是“没有足够的值要解压(预期2,得到1)”
答案 0 :(得分:0)
如果您具有批量归一化功能,那么在训练和评估时确实需要分别使用model.train()和model.eval()。
第二部分(压缩代码)没有错。但是,您的模型只有一个输出(请参阅模型的forward函数的return语句),这会导致错误,即您尝试解包2个值,而只有一个。因此,您不能
[bb,cc] = model.forward(test_single)
您必须
out = model.forward(test_single)
我尝试过了,而且可行。