我试图使用以下代码来判断整数是否是回文
public boolean isPalindrome(int num){
if(num < 0) return false;
int reversed = 0, remainder, original = num;
while(num != 0) {
remainder = num % 10; // reversed integer is stored in variable
reversed = reversed * 10 + remainder; //multiply reversed by 10 then add the remainder so it
gets stored at next decimal place.
num /= 10; //the last digit is removed from num after division by 10.
}
// palindrome if original and reversed are equal
return original == reversed;
}
此算法的运行时复杂度为$ O(n)$,因为您必须执行num%10 n次。但是,这超出了时间限制。
相反,以下算法有效
public class Solution {
public boolean isPalindrome(int x) {
// Special cases:
// As discussed above, when x < 0, x is not a palindrome.
// Also if the last digit of the number is 0, in order to be a palindrome,
// the first digit of the number also needs to be 0.
// Only 0 satisfy this property.
if(x < 0 || (x % 10 == 0 && x != 0)) {
return false;
}
int revertedNumber = 0;
while(x > revertedNumber) {
revertedNumber = revertedNumber * 10 + x % 10;
x /= 10;
}
// When the length is an odd number, we can get rid of the middle digit by revertedNumber/10
// For example when the input is 12321, at the end of the while loop we get x = 12, revertedNumber = 123,
// since the middle digit doesn't matter in palidrome(it will always equal to itself), we can
simply get rid of it.
return x == revertedNumber || x == revertedNumber/10;
}
}
它的运行时复杂度是否仍为O(n)?