警告这个问题确实需要一个非标准的Python软件包x = np.stack((img1, img2, img3), axis = -1)
。我有一个包含3个元素的列表,列表中的每个元素都包含另一个包含2个元素的列表:nba_api
数据帧和player
数据帧。建议采用什么方法来达到以下预期结果:1个合并的team
数据帧和1个合并的player
数据帧?来自R背景,我将通过以下方法解决此问题:1.将team
数据帧与players
数据帧合并到team
中,然后,2.使用joined_list
行将结果绑定到一个数据帧中。我了解这对于许多有经验的Python用户来说可能是非常基本的,但是在这里进行了许多搜索之后,我很难受尝试找到正确的方法。
do.call(rbind, joined_list)
答案 0 :(得分:1)
多一点阅读(和清楚)之后,我能够将代码的手动部分组合到for循环中,从而生成一个包含玩家数据的列表和一个包含团队数据的列表。然后,使用这篇文章:Concatenate a list of pandas dataframes together,我可以将player
和team
列表组合到各自的数据框中。
## output player frames
i=0
df_out=[]
df_players=[]
for i in range(len(temp)):
df_out = temp[i].get_data_frames()
df_players.append(df_out[0]) # index 0 will always contain player frame
df_players = pd.concat(df_players)
print(df_players)
## output team frames
i=0
df_out=[]
df_team=[]
for i in range(len(temp)):
df_out = temp[i].get_data_frames()
df_team.append(df_out[1]) # index 1 will always contain team frame
df_team = pd.concat(df_team)
print(df_team)
答案 1 :(得分:1)
首先,祝贺您坚持并自己找到解决方案! :D
lst_1 = [1, 2, 3, 4]
for i in range(len(lst_1)):
print(i)
可以写为
lst_1 = [1, 2, 3, 4]
for item in lst_1:
print(item)
奖金:请注意我对变量名所做的更改。有关Python样式的一般参考,请参见PEP 8。
gameids = ['0021900001','0021900002','0021900012']
headers1 = {
'Host': 'stats.nba.com',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:61.0) Gecko/20100101 Firefox/61.0',
'Accept': 'application/json, text/plain, */*',
'Accept-Language': 'en-US,en;q=0.5',
'Referer': 'https://stats.nba.com/',
'Accept-Encoding': 'gzip, deflate, br',
'Connection': 'keep-alive',
}
# store player and team results for each gameids as elements of list temp
temp = list()
for i in range(len(gameids)):
temp.append(boxscoreadvancedv2.BoxScoreAdvancedV2(game_id = gameids[i], headers=headers1))
可以写为
game_ids = ['0021900001','0021900002','0021900012']
api_headers = {
'Host': 'stats.nba.com',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:61.0) Gecko/20100101 Firefox/61.0',
'Accept': 'application/json, text/plain, */*',
'Accept-Language': 'en-US,en;q=0.5',
'Referer': 'https://stats.nba.com/',
'Accept-Encoding': 'gzip, deflate, br',
'Connection': 'keep-alive',
}
api_results = [boxscoreadvancedv2.BoxScoreAdvancedV2(game_id=curr_game_id, headers=api_headers) for curr_game_id in game_ids]
# output player frames
i=0
df_out=[]
df_players=[]
for i in range(len(temp)):
df_out = temp[i].get_data_frames()
df_players.append(df_out[0]) # index 0 will always contain player frame
df_players = pd.concat(df_players)
print(df_players)
# output team frames
i=0
df_out=[]
df_team=[]
for i in range(len(temp)):
df_out = temp[i].get_data_frames()
df_team.append(df_out[1]) # index 1 will always contain team frame
df_team = pd.concat(df_team)
print(df_team)
使用前两个技巧,我们将得出以下结论:
players_lst = []
team_lst = []
for curr_res in api_results:
curr_dfs = curr_res.get_data_frames()
players_lst.append(curr_dfs[0])
team_lst.append(curr_dfs[1])
players_df = pd.concat(players_lst)
team_df = pd.concat(team_lst)
在这里,为了清晰起见,将其略微细分了。
import pandas as pd
from nba_api.stats.endpoints.boxscoreadvancedv2 import BoxScoreAdvancedV2
game_ids = ['0021900001', '0021900002', '0021900012']
api_headers = {
'Host': 'stats.nba.com',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:61.0) Gecko/20100101 Firefox/61.0',
'Accept': 'application/json, text/plain, */*',
'Accept-Language': 'en-US,en;q=0.5',
'Referer': 'https://stats.nba.com/',
'Accept-Encoding': 'gzip, deflate, br',
'Connection': 'keep-alive',
}
# generator of results from the API
api_results = (BoxScoreAdvancedV2(game_id=curr_game_id, headers=api_headers) for curr_game_id in game_ids)
# generator of lists of DataFrames from the API results
# think of it like: [[Player DF, Team DF], [Player DF, Team DF], ...]
api_res_dfs = (curr_res.get_data_frames() for curr_res in api_results)
# unpacking the size 2 lists of DataFrames into 2 flat lists
# [[Player DF, Team DF], [Player DF, Team DF], ...] -> [Player DF, Player DF, ...], [Team DF, Team DF, ...]
# see https://stackoverflow.com/q/2921847/11301900 for more on the use of the asterisk (*)
players_tupe, team_tupe = zip(*api_res_dfs)
# concatenating the various DataFrames, exactly the same as in your original code
players_df = pd.concat(players_tupe)
team_df = pd.concat(team_tupe)
print(players_df)
print(team_df)
这取决于这样一个事实,不仅如您所指出的,玩家数据框始终在列表中始终排在第一位,而团队数据框始终在列表中排在第二位,而这些仅是 中的两项结果列表。
让我知道您是否有任何问题:)