通过pip从requirements.txt

时间:2019-11-08 13:43:30

标签: python numpy flask scipy

出于研究目的,我从github克隆了一个存储库,我正在尝试从requirements.txt文件中安装一些需求。在Windows上安装正常,但是在Ubuntu 18.04上安装时出现错误

我正在将其安装在conda创建的虚拟环境中。我正在使用Python 3.8。下面是错误回溯。

Collecting flask
  Using cached https://files.pythonhosted.org/packages/9b/93/628509b8d5dc749656a9641f4caf13540e2cdec85276964ff8f43bbb1d3b/Flask-1.1.1-py2.py3-none-any.whl
Collecting mysqlclient
  Using cached https://files.pythonhosted.org/packages/f8/9b/5db9a03e2088a87c26e3e4d4c7f7e8f4c2dbae610f9521cdfac15755a795/mysqlclient-1.4.5.tar.gz
Collecting sklearn
  Downloading https://files.pythonhosted.org/packages/1e/7a/dbb3be0ce9bd5c8b7e3d87328e79063f8b263b2b1bfa4774cb1147bfcd3f/sklearn-0.0.tar.gz
Collecting numpy
  Downloading https://files.pythonhosted.org/packages/3a/8f/f9ee25c0ae608f86180c26a1e35fe7ea9d71b473ea7f54db20759ba2745e/numpy-1.17.3-cp38-cp38-manylinux1_x86_64.whl (20.5MB)
     |████████████████████████████████| 20.5MB 153kB/s 
Collecting scipy
  Downloading https://files.pythonhosted.org/packages/ee/5b/5afcd1c46f97b3c2ac3489dbc95d6ca28eacf8e3634e51f495da68d97f0f/scipy-1.3.1.tar.gz (23.6MB)
     |████████████████████████████████| 23.6MB 82kB/s 
  Installing build dependencies ... done
  Getting requirements to build wheel ... done
    Preparing wheel metadata ... error
    ERROR: Command errored out with exit status 1:
     command: /home/agozie/miniconda3/envs/facial/bin/python /home/agozie/miniconda3/envs/facial/lib/python3.8/site-packages/pip/_vendor/pep517/_in_process.py prepare_metadata_for_build_wheel /tmp/tmpolyoz9vt
         cwd: /tmp/pip-install-sw1gf9a3/scipy
    Complete output (153 lines):
    lapack_opt_info:
    lapack_mkl_info:
    customize UnixCCompiler
      libraries mkl_rt not found in ['/home/agozie/miniconda3/envs/facial/lib', '/usr/local/lib', '/usr/lib', '/usr/lib/x86_64-linux-gnu']
      NOT AVAILABLE

    openblas_lapack_info:
    customize UnixCCompiler
    customize UnixCCompiler
      libraries openblas not found in ['/home/agozie/miniconda3/envs/facial/lib', '/usr/local/lib', '/usr/lib', '/usr/lib/x86_64-linux-gnu']
      NOT AVAILABLE

    openblas_clapack_info:
    customize UnixCCompiler
    customize UnixCCompiler
      libraries openblas,lapack not found in ['/home/agozie/miniconda3/envs/facial/lib', '/usr/local/lib', '/usr/lib', '/usr/lib/x86_64-linux-gnu']
      NOT AVAILABLE

    atlas_3_10_threads_info:
    Setting PTATLAS=ATLAS
    customize UnixCCompiler
      libraries tatlas,tatlas not found in /home/agozie/miniconda3/envs/facial/lib
    customize UnixCCompiler
      libraries lapack_atlas not found in /home/agozie/miniconda3/envs/facial/lib
    customize UnixCCompiler
      libraries tatlas,tatlas not found in /usr/local/lib
    customize UnixCCompiler
      libraries lapack_atlas not found in /usr/local/lib
    customize UnixCCompiler
      libraries tatlas,tatlas not found in /usr/lib
    customize UnixCCompiler
      libraries lapack_atlas not found in /usr/lib
    customize UnixCCompiler
      libraries tatlas,tatlas not found in /usr/lib/x86_64-linux-gnu
    customize UnixCCompiler
      libraries lapack_atlas not found in /usr/lib/x86_64-linux-gnu
    <class 'numpy.distutils.system_info.atlas_3_10_threads_info'>
      NOT AVAILABLE

    atlas_3_10_info:
    customize UnixCCompiler
      libraries satlas,satlas not found in /home/agozie/miniconda3/envs/facial/lib
    customize UnixCCompiler
      libraries lapack_atlas not found in /home/agozie/miniconda3/envs/facial/lib
    customize UnixCCompiler
      libraries satlas,satlas not found in /usr/local/lib
    customize UnixCCompiler
      libraries lapack_atlas not found in /usr/local/lib
    customize UnixCCompiler
      libraries satlas,satlas not found in /usr/lib
    customize UnixCCompiler
      libraries lapack_atlas not found in /usr/lib
    customize UnixCCompiler
      libraries satlas,satlas not found in /usr/lib/x86_64-linux-gnu
    customize UnixCCompiler
      libraries lapack_atlas not found in /usr/lib/x86_64-linux-gnu
    <class 'numpy.distutils.system_info.atlas_3_10_info'>
      NOT AVAILABLE

    atlas_threads_info:
    Setting PTATLAS=ATLAS
    customize UnixCCompiler
      libraries ptf77blas,ptcblas,atlas not found in /home/agozie/miniconda3/envs/facial/lib
    customize UnixCCompiler
      libraries lapack_atlas not found in /home/agozie/miniconda3/envs/facial/lib
    customize UnixCCompiler
      libraries ptf77blas,ptcblas,atlas not found in /usr/local/lib
    customize UnixCCompiler
      libraries lapack_atlas not found in /usr/local/lib
    customize UnixCCompiler
      libraries ptf77blas,ptcblas,atlas not found in /usr/lib
    customize UnixCCompiler
      libraries lapack_atlas not found in /usr/lib
    customize UnixCCompiler
      libraries ptf77blas,ptcblas,atlas not found in /usr/lib/x86_64-linux-gnu
    customize UnixCCompiler
      libraries lapack_atlas not found in /usr/lib/x86_64-linux-gnu
    <class 'numpy.distutils.system_info.atlas_threads_info'>
      NOT AVAILABLE

    atlas_info:
    customize UnixCCompiler
      libraries f77blas,cblas,atlas not found in /home/agozie/miniconda3/envs/facial/lib
    customize UnixCCompiler
      libraries lapack_atlas not found in /home/agozie/miniconda3/envs/facial/lib
    customize UnixCCompiler
      libraries f77blas,cblas,atlas not found in /usr/local/lib
    customize UnixCCompiler
      libraries lapack_atlas not found in /usr/local/lib
    customize UnixCCompiler
      libraries f77blas,cblas,atlas not found in /usr/lib
    customize UnixCCompiler
      libraries lapack_atlas not found in /usr/lib
    customize UnixCCompiler
      libraries f77blas,cblas,atlas not found in /usr/lib/x86_64-linux-gnu
    customize UnixCCompiler
      libraries lapack_atlas not found in /usr/lib/x86_64-linux-gnu
    <class 'numpy.distutils.system_info.atlas_info'>
      NOT AVAILABLE

    lapack_info:
    customize UnixCCompiler
      libraries lapack not found in ['/home/agozie/miniconda3/envs/facial/lib', '/usr/local/lib', '/usr/lib', '/usr/lib/x86_64-linux-gnu']
      NOT AVAILABLE

    lapack_src_info:
      NOT AVAILABLE

      NOT AVAILABLE

    setup.py:386: UserWarning: Unrecognized setuptools command ('dist_info --egg-base /tmp/pip-modern-metadata-l1gkp34t'), proceeding with generating Cython sources and expanding templates
      warnings.warn("Unrecognized setuptools command ('{}'), proceeding with "
    Running from scipy source directory.
    /tmp/pip-build-env-ikhv85cu/overlay/lib/python3.8/site-packages/numpy/distutils/system_info.py:624: UserWarning:
        Atlas (http://math-atlas.sourceforge.net/) libraries not found.
        Directories to search for the libraries can be specified in the
        numpy/distutils/site.cfg file (section [atlas]) or by setting
        the ATLAS environment variable.
      self.calc_info()
    /tmp/pip-build-env-ikhv85cu/overlay/lib/python3.8/site-packages/numpy/distutils/system_info.py:624: UserWarning:
        Lapack (http://www.netlib.org/lapack/) libraries not found.
        Directories to search for the libraries can be specified in the
        numpy/distutils/site.cfg file (section [lapack]) or by setting
        the LAPACK environment variable.
      self.calc_info()
    /tmp/pip-build-env-ikhv85cu/overlay/lib/python3.8/site-packages/numpy/distutils/system_info.py:624: UserWarning:
        Lapack (http://www.netlib.org/lapack/) sources not found.
        Directories to search for the sources can be specified in the
        numpy/distutils/site.cfg file (section [lapack_src]) or by setting
        the LAPACK_SRC environment variable.
      self.calc_info()
    Traceback (most recent call last):
      File "/home/agozie/miniconda3/envs/facial/lib/python3.8/site-packages/pip/_vendor/pep517/_in_process.py", line 257, in <module>
        main()
      File "/home/agozie/miniconda3/envs/facial/lib/python3.8/site-packages/pip/_vendor/pep517/_in_process.py", line 240, in main
        json_out['return_val'] = hook(**hook_input['kwargs'])
      File "/home/agozie/miniconda3/envs/facial/lib/python3.8/site-packages/pip/_vendor/pep517/_in_process.py", line 110, in prepare_metadata_for_build_wheel
        return hook(metadata_directory, config_settings)
      File "/tmp/pip-build-env-ikhv85cu/overlay/lib/python3.8/site-packages/setuptools/build_meta.py", line 156, in prepare_metadata_for_build_wheel
        self.run_setup()
      File "/tmp/pip-build-env-ikhv85cu/overlay/lib/python3.8/site-packages/setuptools/build_meta.py", line 236, in run_setup
        super(_BuildMetaLegacyBackend,
      File "/tmp/pip-build-env-ikhv85cu/overlay/lib/python3.8/site-packages/setuptools/build_meta.py", line 142, in run_setup
        exec(compile(code, __file__, 'exec'), locals())
      File "setup.py", line 505, in <module>
        setup_package()
      File "setup.py", line 501, in setup_package
        setup(**metadata)
      File "/tmp/pip-build-env-ikhv85cu/overlay/lib/python3.8/site-packages/numpy/distutils/core.py", line 135, in setup
        config = configuration()
      File "setup.py", line 403, in configuration
        raise NotFoundError(msg)
    numpy.distutils.system_info.NotFoundError: No lapack/blas resources found.
    ----------------------------------------
ERROR: Command errored out with exit status 1: /home/agozie/miniconda3/envs/facial/bin/python /home/agozie/miniconda3/envs/facial/lib/python3.8/site-packages/pip/_vendor/pep517/_in_process.py prepare_metadata_for_build_wheel /tmp/tmpolyoz9vt Check the logs for full command output.

以下是requirements.txt文件

mysqlclient
sklearn
numpy
scipy
pillow
dlib
face_recognition
flask_bootstrap
pytz
xlsxwriter
pandas
flask_mail
tensorflow
xlrd

我认为这与操作系统有关,但是我不确定。如果有人可以提供帮助,我将不胜感激。

编辑:我尝试使用conda install scipy首先安装scipy,并得到以下输出

Solving environment: failed with initial frozen solve. Retrying with flexible solve.
Solving environment: failed with repodata from current_repodata.json, will retry with next repodata source.
Collecting package metadata (repodata.json): done
Solving environment: failed with initial frozen solve. Retrying with flexible solve.
Solving environment: - 
Found conflicts! Looking for incompatible packages.
This can take several minutes.  Press CTRL-C to abor\ 
Examining certifi:  16%|███▍                  | 5/32 [08:11<1:13:42, 163.79s/it]
Comparing s/ cs that have this dependency:   0%|          | 0/2 [00:00<?, ?it/s]
Finding shortest conflict path for certifi[version='>=2016.09']:   0%| | 0/4 [00Finding- hortest conflict path for ca-certificates:  25%|▎| 1/4 [08:43<26:09, 52Finding shortest conflict path for ca-certificates:  50%|▌| 2/4 [08:43<08:43, 26/ nding shortest conflict path for certifi:  50%|▌| 2/4 [09:05<08:43, 261.61s/itFinding shortest conflict path for certifi:  75%|▊| 3/4 [09:05<03:09, 189.68s/itFinding shortest confl| t path for certifi[version='>=2016.9.26']:  75%|▊| 3/4 [Finding shortest conflict path for certifi[version='>=2016.9.26']: 100%|█| 4/4 [Comparing specs that have this dependency:  50%|▌| 1/2 [25:37<25:37, 1537.78s/it]                       
Finding shortest conflict path for certifi[version='>=2016.09']:   0%| | 0/3 [00Finding shortest conf/ ct path for ca-certificates:  33%|▎| 1/3 [00:00<00:00, 32Finding shortest conflict path for certifi[version='>=2016.9.26']:  67%|▋| 2/3 [Examining python:  47%|███████████▎            | 15/32 [41:46<51:46, 182.75s// ]Comparing specs- hat have this dependency:   0%|          | 0/2 [00:00<?, ?it/s]
Finding shortes- conflict path for python[version='>=3.7,<3.8.0a0']:   0%| | 0/5Finding shortest conflict path for python=3.8:  20%|▏| 1/5 [00:00<00:00, 10.88itFinding shortest conflict path for python[version='>=3.6,<3.7.0a0']:  40%|▍| 2/5Finding shortest conflic| path for python[version='>=3.6,<3.7.0a0']:  60%|▌| 3/5Finding shortest conflict path for python[version='>=3.5,<3.6.0a0']:  60%|▌| 3/5Finding shortest conflic- path for python[version='>=2.7,<2.8.0a0']:  80%|▊| 4/5Finding shortest conflict path for python[version='>=2.7,<2.8.0a0']: 100%|█| 5/5Comparing specs that have this dependency:  50%|▌| 1/2 [05:30<05:30, 330.15s/it]Finding shortest conflict path for python[version='>=3.8,<3.9.0a0']:   0%| | 0/2failed                                                                                                                                                          UnsatisfiableError: The following specifications were found
to be incompatible with the existing python installation in your environment:

Specifications:

  - scipy -> python[version='>=2.7,<2.8.0a0|>=3.5,<3.6.0a0|>=3.6,<3.7.0a0|>=3.7,<3.8.0a0']

Your python: python=3.8

If python is on the left-most side of the chain, that's the version you've asked for.
When python appears to the right, that indicates that the thing on the left is somehow
not available for the python version you are constrained to. Note that conda will not
change your python version to a different minor version unless you explicitly specify
that.

The following specifications were found to be incompatible with each other:



Package certifi conflicts for:
scipy -> python[version='>=3.7,<3.8.0a0'] -> pip -> setuptools -> certifi[version='>=2016.09|>=2016.9.26']
python=3.8 -> pip -> setuptools -> certifi[version='>=2016.09|>=2016.9.26']
Package setuptools conflicts for:
python=3.8 -> pip -> setuptools
scipy -> python[version='>=3.7,<3.8.0a0'] -> pip -> setuptools
Package pip conflicts for:
python=3.8 -> pip
scipy -> python[version='>=3.7,<3.8.0a0'] -> pip
Package ca-certificates conflicts for:
scipy -> python[version='>=3.7,<3.8.0a0'] -> ca-certificates
python=3.8 -> openssl[version='>=1.1.1d,<1.1.2a'] -> ca-certificates
Package wheel conflicts for:
scipy -> python[version='>=3.7,<3.8.0a0'] -> pip -> wheel
python=3.8 -> pip -> wheel

1 个答案:

答案 0 :(得分:1)

您似乎错误地安装了SciPy,似乎在平台上的PyPI上没有二进制文件(这令人惊讶,因为SciPy 1.3.1中有many wheels

但是,由于您已经在使用conda,因此应该首先使用 conda install 通过相应的 conda 软件包安装尽可能多的依赖项。特别是,像NumPy和SciPy这样的复杂程序包已经被熟练地打包到了conda上,类似于tensorflow和pandas这样的程序包。

尽管在the docs中没有变得明显,但是conda-install 可以读取基本的requirements.txt文件。我尝试像上面那样传递以上requirements.txt

conda install --file requirements.txt

,但其中一些软件包不是我的默认conda channels中的任何软件包,或者名称不同(例如,对于“ sklearn”,conda软件包为“ scikit-learn”)。具体来说:

PackagesNotFoundError: The following packages are not available from current channels:

  - face_recognition
  - flask_bootstrap
  - flask_mail
  - sklearn

您的某些依赖项可能根本没有任何conda软件包。

我认为最好的方法是通过 conda 安装尽可能多的依赖项,然后使用conda env export创建一个environment.yml文件。

然后,在设置开发环境时,首先从environment.yml安装软件包,然后 运行pip install -r requirements.txt。后者应该忽略conda已经满足的任何要求,而只是安装conda可能尚未管理的其他软件包,例如“ flask-bootstrap”。