我正在浏览网页以获取表的行,然后将每一行追加到数据框。但是,我得到的列表不能被合并到一个数据帧中。如何转换此列表以允许pd.concat()?
我尝试过pd.DataFrame(data)
,但返回的是KeyError:0
这是来自print(data)https://imgur.com/a/t0v0QaU的结果:
[ Unnamed: 0 2015-2016 2016-2017 2017-2018
0 Average net price $6,497 $8,311 $7,035, Unnamed: 0 2015-2016 2016-2017 2017-2018
0 Average net price $26,916 $27,175 $27,584, Unnamed: 0 2015-2016 2016-2017 2017-2018
0 Average net price $8,123 $8,022 $7,687, Unnamed: 0 2015-2016 2016-2017 2017-2018
0 Average net price — $16,694 $21,842, Unnamed: 0 2015-2016 2016-2017 2017-2018
0 Average net price $13,888 $12,989 $13,314, Unnamed: 0 2015-2016 2016-2017 2017-2018
0 Average net price $28,095 $27,925 $28,406, Unnamed: 0 2015-2016 2016-2017 2017-2018
0 Average net price $7,242 $6,960 $8,436, Unnamed: 0 2015-2016 2016-2017 2017-2018
0 Average net price $25,839 $26,930 $26,710, Unnamed: 0 2015-2016 2016-2017 2017-2018
0 Average net price $18,603 $16,450 $17,145]
import pandas as pd
import requests
from bs4 import BeautifulSoup as bs
data = []
url = 'https://nces.ed.gov/collegenavigator/?id='
ids = pd.read_excel('ids.xlsx')
for index, row in ids.iterrows():
try:
r = requests.get(url+str(row[0]))
soup = bs(r.content, 'lxml')
table = pd.read_html(str(soup.select_one('table:has(td:contains("Average net price"))')))
data.append(table[0])
except:
pass
print(data)
id是:
UnitID
180203
177834
222178
138558
412173
126182
188429
188438
168528
133872
理想情况下,我希望输出具有一个id列以及每个年份范围(2015-2016、2016-2017等)的列,净价填充在矩阵中,如下所示:https://imgur.com/a/RC0hoGz < / p>
答案 0 :(得分:2)
基本上,只需将ID保存在已解析数据帧的单独列中即可。现在它被忽略了
...
for index, row in ids.iterrows():
try:
r = requests.get(url+str(row[0]))
soup = bs(r.content, 'lxml')
table = pd.read_html(str(soup.select_one('table:has(td:contains("Average net price"))')), index_col=0)[0]
table['id'] = row[0] # save the Id in a separate column
data.append(table.set_index('id'))
except:
pass
df = pd.concat(data)
结果:
2015-2016 2016-2017 2017-2018
id
180203 $6,497 $8,311 $7,035
222178 $26,916 $27,175 $27,584
138558 $8,123 $8,022 $7,687
412173 — $16,694 $21,842
126182 $13,888 $12,989 $13,314
188429 $28,095 $27,925 $28,406
188438 $7,242 $6,960 $8,436
168528 $25,839 $26,930 $26,710
133872 $18,603 $16,450 $17,145
答案 1 :(得分:1)
很酷的问题,
因此,当您将熊猫用于任何事物时,通常会为您提供系列或数据框作为输出。因此,当您创建一个名为data
的列表,然后将table[0]
附加到该列表时。您以为自己要附加一个列表(我认为)。但是pd.read_html
给出了一个数据帧。因此,您只需要创建data
作为数据框,然后将每个数据框附加到该数据框即可。
这是解决方法:
import pandas as pd
import requests
from bs4 import BeautifulSoup as bs
data = pd.DataFrame()
url = 'https://nces.ed.gov/collegenavigator/?id='
ids = pd.read_excel('ids.xlsx')
for index, row in ids.iterrows():
try:
r = requests.get(url+str(row[0]))
soup = bs(r.content, 'lxml')
table = pd.read_html(str(soup.select_one('table:has(td:contains("Average net price"))')))
data = data.append(table[0], ignore_index=True)
except:
pass
希望有帮助。
答案 2 :(得分:1)
使用:
sleep
输出:
import pandas as pd
import requests
from bs4 import BeautifulSoup as bs
data = []
url = 'https://nces.ed.gov/collegenavigator/?id='
ids = pd.read_excel('ids.xlsx')
for index, row in ids.iterrows():
try:
r = requests.get(url+str(row[0]))
soup = bs(r.content, 'lxml')
table = pd.read_html(str(soup.select_one('table:has(td:contains("Average net price"))')))
dataframe=table[0]
dataframe.index=row
data.append(dataframe)
except:
pass
df_values= (pd.concat(data,sort=False)
.drop('Unnamed: 0',axis=1)
.rename_axis(index='UnitID') )
print(df_values)