Keras中3D张量上的Softmax层

时间:2019-11-06 19:14:45

标签: python tensorflow keras softmax inner-product

我有以下网络:

name

这是摘要:

type

我有两个问题:

1- softmax层的输入为:num_values_week,并且输出具有相同的暗淡!那么在这一步发生了什么?当输入为2D时,softmax激活会赋予时间步长(第二次暗淡)不同的概率或权重,但是这种情况呢?

2-我想在5 daysinp_features = Input(shape=(segment_number, 10), name='features_input') flow_features = Bidirectional(GRU(gru_size, activation='tanh', return_sequences=True, name='LSTM1'))(inp_features) features = Model(inp_features, flow_features) features.summary() sent_input = Input(shape=(segment_number, max_seg_len), dtype='float32', name='input_2') y = Dense(40, name='dense_2')(sent_input) y = concatenate([inp_features, y], axis=2) y = Dense((gru_size*2), name='dense_3')(y) y = Activation('softmax')(y) y = keras.layers.dot([y, flow_features], axes=[2, 2]) y = Dense(2, activation='softmax', name='final_softmax')(y) model = Model([inp_features, sent_input], y) model.summary() 之间做点积,为什么?我假设先前的softmax层对应用在第3个dim(64)上的时间步长(第2个dim,20)给出了不同的权重。因此,我想使用softmax输出矩阵为Bi-LSTM(Layer (type) Output Shape Param # ================================================================= features_input (InputLayer) (None, 20, 10) 0 _________________________________________________________________ bidirectional_1 (Bidirection (None, 20, 64) 8256 ================================================================= Total params: 8,256 Trainable params: 8,256 Non-trainable params: 0 _________________________________________________________________ __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== input_2 (InputLayer) (None, 20, 400) 0 __________________________________________________________________________________________________ features_input (InputLayer) (None, 20, 10) 0 __________________________________________________________________________________________________ dense_2 (Dense) (None, 20, 40) 16040 input_2[0][0] __________________________________________________________________________________________________ concatenate_1 (Concatenate) (None, 20, 50) 0 features_input[0][0] dense_2[0][0] __________________________________________________________________________________________________ dense_3 (Dense) (None, 20, 64) 3264 concatenate_1[0][0] __________________________________________________________________________________________________ activation_1 (Activation) (None, 20, 64) 0 dense_3[0][0] __________________________________________________________________________________________________ bidirectional_1 (Bidirectional) (None, 20, 64) 8256 features_input[0][0] __________________________________________________________________________________________________ dot_1 (Dot) (None, 20, 20) 0 activation_1[0][0] bidirectional_1[0][0] __________________________________________________________________________________________________ final_softmax (Dense) (None, 20, 2) 42 dot_1[0][0] ================================================================================================== Total params: 27,602 Trainable params: 27,602 Non-trainable params: 0 __________________________________________________________________________________________________ )的输出做“加权平均”。我在两个矩阵上应用了点积(内部积):

(None, 20, 64)

因此,activation_1匹配bidirectional_1暗淡。我做的对吗?

0 个答案:

没有答案