lmfit-最小化器不接受scipy最小化器关键字参数

时间:2019-11-06 10:13:47

标签: python scipy lmfit

我正在尝试使用lmfit使某些模型适合我的数据。请参阅下面的MWE:

import lmfit
import numpy as np

def lm(params, x):
    slope = params['slope']
    interc = params['interc']

    return interc + slope * x

def lm_min(params, x, data):
    y = lm(params, x)
    return data - y

x = np.linspace(0,100,1000)
y = lm({'slope':1, 'interc':0.5}, x)

ydata = y + np.random.randn(1000)

params = lmfit.Parameters()
params.add('slope', 2)
params.add('interc', 1)

fitter = lmfit.Minimizer(lm_min, params, fcn_args=(x, ydata), fit_kws={'xatol':0.01})
fit = fitter.minimize(method='nelder')

为了尽早完成(准确性现在不是最重要的事情),我想更改停止拟合的标准。基于docs和对SO的一些搜索,我尝试提供一些关键字参数(在下面的行中为fit_kws),这些参数将传递给所使用的最小化器。我也尝试使用kws**{'xatol':0.01}。紧接着,我还在最后一行称为fitter.minimize()的行中尝试了上述选项。但是,在所有情况下,我都会得到一个TypeError,说它得到了意外的关键字参数:

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
~/STACK/WUR/PhD/Experiments/Microclimate experiment/Scripts/Fluctuations/mwe.py in <module>()
     25 
     26 fitter = lmfit.Minimizer(lm_min, params, fcn_args=(x, ydata), fit_kws={'xatol':0.01})
---> 27 fit = fitter.minimize(method='nelder')
     28 

~/anaconda3/envs/py/lib/python3.6/site-packages/lmfit/minimizer.py in minimize(self, method, params, **kws)
   1924                         val.lower().startswith(user_method)):
   1925                     kwargs['method'] = val
-> 1926         return function(**kwargs)
   1927 
   1928 

~/anaconda3/envs/py/lib/python3.6/site-packages/lmfit/minimizer.py in scalar_minimize(self, method, params, **kws)
    906         else:
    907             try:
--> 908                 ret = scipy_minimize(self.penalty, variables, **fmin_kws)
    909             except AbortFitException:
    910                 pass

TypeError: minimize() got an unexpected keyword argument 'fit_kws'

有人知道我如何为特定的求解器添加关键字参数吗?

版本信息:

python:3.6.9
scipy:1.3.1
lmfit:0.9.12

2 个答案:

答案 0 :(得分:0)

将关键字参数传递给基础scipy求解器的最佳方法就是使用

# Note: valid but will not do what you want
fitter = lmfit.Minimizer(lm_min, params, fcn_args=(x, ydata), xatol=0.01)
fit = fitter.minimize(method='nelder')

# Also: valid but will not do what you want
fitter = lmfit.Minimizer(lm_min, params, fcn_args=(x, ydata))
fit = fitter.minimize(method='nelder', xatol=0.01)

这里的主要问题是xatol对于基础求解器scipy.optimize.minimize()不是有效的关键字参数。相反,您可能打算使用tol

fitter = lmfit.Minimizer(lm_min, params, fcn_args=(x, ydata), tol=0.01)
fit = fitter.minimize(method='nelder')

fitter = lmfit.Minimizer(lm_min, params, fcn_args=(x, ydata))
fit = fitter.minimize(method='nelder', tol=0.01)

答案 1 :(得分:0)

在github issue中,我找到了以下解决方案:

fit = fitter.minimize(method='nelder', **{'options':{'xatol':4e-4}})

更新
如@dashesy所述,这与编写相同:

fit = fitter.minimize(method='nelder', options={'xatol':4e-4})

这也适用于其他求解器选项。