我正在使用Deap库(Python)进行进化计算。我对以下突变功能感兴趣:
deap.tools.mutGaussian(individual, mu, sigma, indpb)
根据文档,indpb
是指使每个解决方案元素发生突变的概率。
我的问题是,如何为解决方案的某些部分(指标)指定更高(或更低)的突变概率。
换句话说,indpb
不是标量,而是解的向量。
答案 0 :(得分:1)
您很可能需要实现自己的突变功能。也许像下面这样:
def mutGaussian(individual, mu, sigma, indpb):
size = len(individual)
for i, m, s, p in zip(xrange(size), mu, sigma, indpb):
if random.random() < p:
individual[i] += random.gauss(m, s)
return individual,