我想用Keras从预先训练的权重开始训练模型(例如,如果已经完成了50个纪元,并且我想再训练50个纪元,那么第二次训练可以从第一次训练的权重开始)。如何将先前的.h5文件与权重包括在拟合生成器中?
callbacks_list = [
ModelCheckpoint(top_weights_path, monitor='val_loss', verbose=1, save_best_only=True),
TensorBoard(log_dir=logs, batch_size=batch_size, histogram_freq=0, write_graph=True, write_grads=True, write_images=True),
ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=500, verbose=1)]
model.fit_generator(train_gen,
steps_per_epoch=len(listREFPaths[:-val_split]),
epochs=nb_epoch,
callbacks=callbacks_list,
validation_data=val_gen if use_val_gen else (X_val_data, y_val_data),
validation_steps=len(listREFPaths[-val_split:]),
shuffle=rnd_shuffle,
verbose=1)
在此讨论中(https://github.com/keras-team/keras/issues/2378),我没有找到答案。