我使用tensorflow2尝试使用函数调用tf.summary.trace_export()记录tensorflow执行,并在tensorboard图形中查看它。但是,在调用tf.summary.trace_export(name="my_func_trace", step=0, profiler_outdir=logdir)
时,出现
tensorflow.python.framework.errors_impl.NotFoundError: Failed to create a directory: logs/func/20191105-014756\plugins\profile\2019-11-05_01-47-57; No such file or directory
除了使用
创建文件编写器外,我还需要手动创建/ plugin / profile /吗?stamp = datetime.now().strftime("%Y%m%d-%H%M%S")
logdir = 'logs/func/%s' % stamp
writer = tf.summary.create_file_writer(logdir)
当我尝试执行tensorflow.org(https://www.tensorflow.org/tensorboard/graphs#graphs_of_tffunctions)中给出的示例时,也会出现同样的错误
这是我的tensorflow简单代码:
import tensorflow as tf
from datetime import datetime
stamp = datetime.now().strftime("%Y%m%d-%H%M%S")
logdir = './logs/tensor-constants/%s' % stamp
writer = tf.summary.create_file_writer(logdir)
a = tf.constant(1, dtype=tf.int32, shape=(), name='a')
b = tf.constant(2, dtype=tf.int32, shape=(), name='b')
tf.summary.trace_on(graph=True, profiler=True)
add = tf.math.add(a,b, name='addition')
# Print will be tensornode value
print(add)
with writer.as_default():
tf.summary.trace_export(name="tensor-constants",
step=0,
profiler_outdir=logdir)
错误跟踪:
(venv) PS C:\Users\amvij\Vijay\github\tensorflow-learning> & c:/Users/amvij/Vijay/github/tensorflow-learning/venv/Scripts/python.exe c:/Users/amvij/Vijay/github/tensorflow-learning/basics/tensor-constants.py
2019-11-05 02:11:50.385963: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
2019-11-05 02:11:50.409tf.Tensor(3, shape=(), dtype=int32)
Traceback (most recent call last):
File "c:/Users/amvij/Vijay/github/tensorflow-learning/basics/tensor-constants.py", line 28, in <module>
profiler_outdir=logdir)
File "C:\Users\amvij\Vijay\github\tensorflow-learning\venv\lib\site-packages\tensorflow_core\python\ops\summary_ops_v2.py", line 1218, in trace_export
_profiler.save(profiler_outdir, _profiler.stop())
File "C:\Users\amvij\Vijay\github\tensorflow-learning\venv\lib\site-packages\tensorflow_core\python\eager\profiler.py", line 140, in save
gfile.MakeDirs(plugin_dir)
File "C:\Users\amvij\Vijay\github\tensorflow-learning\venv\lib\site-packages\tensorflow_core\python\lib\io\file_io.py", line 438, in recursive_create_dir
recursive_create_dir_v2(dirname)
File "C:\Users\amvij\Vijay\github\tensorflow-learning\venv\lib\site-packages\tensorflow_core\python\lib\io\file_io.py", line 453, in recursive_create_dir_v2
pywrap_tensorflow.RecursivelyCreateDir(compat.as_bytes(path))
tensorflow.python.framework.errors_impl.NotFoundError: Failed to create a directory: ./logs/tensor-constants/20191105-021150\plugins\profile\2019-11-05_02-11-50; No such file or directory
(venv) PS C:\Users\amvij\Vijay\github\tensorflow-learning>
对于tensorflow.org代码(https://www.tensorflow.org/tensorboard/graphs#graphs_of_tffunctions)中给出的示例,也会出现相同的错误:
from datetime import datetime
import tensorflow as tf
# The function to be traced.
@tf.function
def my_func(x, y):
# A simple hand-rolled layer.
return tf.nn.relu(tf.matmul(x, y))
# Set up logging.
stamp = datetime.now().strftime("%Y%m%d-%H%M%S")
logdir = 'logs/func/%s' % stamp
writer = tf.summary.create_file_writer(logdir)
# Sample data for your function.
x = tf.random.uniform((3, 3))
y = tf.random.uniform((3, 3))
# Bracket the function call with
# tf.summary.trace_on() and tf.summary.trace_export().
tf.summary.trace_on(graph=True, profiler=True)
# Call only one tf.function when tracing.
z = my_func(x, y)
with writer.as_default():
tf.summary.trace_export(
name="my_func_trace",
step=0,
profiler_outdir=logdir)
我正在使用Windows 10进行开发。
答案 0 :(得分:1)
logdir = logs\\fit\\ + datetime.now().strftime("%Y%m%d-%H%M%S")
从日志目录查看输出运行tensorboard --logdir=fit
对于@tf.function
,不要使用日期时间,而只需使用logdir = logs\\func
。
要查看tf.function
图,请从日志目录运行tensorboard --logdir=func
。
如果使用张量板扩展名(真的不离开jupyter实验室),请从/logs/fit
和logs/func
运行。
答案 1 :(得分:1)
在Windows上,使用logdir = 'logs\\tensor-constants\\%s' % stamp
代替logdir = './logs/tensor-constants/%s' % stamp
答案 2 :(得分:0)
我发现的唯一解决方案是更改tensorflow_core/python/lib/io
内部的问题file_io.py
:
将相应的recursive_create_dir_v2(dirname)
更改为os.makedirs(dirname, exist_ok=True)
做到
@tf_export(v1=["gfile.MakeDirs"])
def recursive_create_dir(dirname):
"""Creates a directory and all parent/intermediate directories.
It succeeds if dirname already exists and is writable.
Args:
dirname: string, name of the directory to be created
Raises:
errors.OpError: If the operation fails.
"""
os.makedirs(dirname, exist_ok=True)
我不知道为什么他们决定需要构建自己的bugy定制方法来创建目录,而不是使用标准的Python库。