我不知道这将被视为重复,因为也许更具体,我一直在编写文件读取器。数据格式如下。
#StartDate StartTime EndDate EndTime ScanDirection Sheath_Press Sheath_Temp Sheath_Avg Sheath_Sdev Sheath_RH ColSamp_Avg ColSamp_Sdev ColSamp_RH ColSamp_Temp CPC_A_FlwAvg CPC_A_Sdev Sat_Temp Cond_Temp SEMS_Errors MCPC_Errors Impactr_Press Min_HV Max_HV Bin_Cnts1 Bin_Cnts2 Bin_Cnts3 Bin_Cnts4 Bin_Cnts5 Bin_Cnts6 Bin_Cnts7 Bin_Cnts8 Bin_Cnts9 Bin_Cnts10 Bin_Cnts11 Bin_Cnts12 Bin_Cnts13 Bin_Cnts14 Bin_Cnts15 Bin_Cnts16 Bin_Cnts17 Bin_Cnts18 Bin_Cnts19 Bin_Cnts20 Bin_Cnts21 Bin_Cnts22 Bin_Cnts23 Bin_Cnts24 Bin_Cnts25 Bin_Cnts26 Bin_Cnts27 Bin_Cnts28 Bin_Cnts29 Bin_Cnts30 Bin_Cnts31 Bin_Cnts32 Bin_Cnts33 Bin_Cnts34 Bin_Cnts35 Bin_Cnts36 Bin_Cnts37 Bin_Cnts38 Bin_Cnts39 Bin_Cnts40 Bin_Cnts41 Bin_Cnts42 Bin_Cnts43 Bin_Cnts44 Bin_Cnts45 Bin_Cnts46 Bin_Cnts47 Bin_Cnts48 Bin_Cnts49 Bin_Cnts50 Bin_Cnts51 Bin_Cnts52 Bin_Cnts53 Bin_Cnts54 Bin_Cnts55 Bin_Cnts56 Bin_Cnts57 Bin_Cnts58 Bin_Cnts59 Bin_Cnts60
1086 190404 08:36:48 190404 08:37:49 1 1018 295.5 5.01 0.011 55 0.311 0.003 0 273.1 0.337 0.000 318.2 293.2 0 0 0.1 2.8 2314 1 5 5 3 6 6 9 18 23 14 21 18 26 33 23 27 25 42 42 36 44 33 41 30 49 39 35 37 39 43 51 26 43 36 23 32 29 15 16 27 13 14 14 17 16 7 7 12 4 5 4 5 0 0 1 0 0 0 0 0
1087 190404 08:38:06 190404 08:39:07 0 1019 295.5 5.00 0.013 55 0.311 0.002 0 273.1 0.337 0.000 318.3 293.2 0 0 0.2 2.8 2315 2 2 2 5 5 5 10 6 17 14 15 28 29 31 26 40 28 37 19 33 22 54 38 41 40 39 37 39 43 42 34 40 32 36 31 29 26 23 19 22 16 16 19 15 11 6 6 8 7 1 4 1 2 7 0 1 0 1 1 2
1088 190404 08:39:25 190404 08:40:25 1 1018 295.5 5.00 0.012 55 0.310 0.002 0 273.1 0.337 0.000 318.3 293.2 0 0 0.2 2.8 2314 1 3 3 7 7 18 8 8 19 15 29 30 32 32 35 29 35 38 29 39 41 36 48 44 50 39 32 35 37 42 34 40 26 37 30 28 35 29 19 15 24 16 12 6 9 7 7 6 10 5 5 1 5 0 2 2 1 0 1 0
1089 190404 08:40:42 190404 08:41:43 0 1018 295.5 5.01 0.008 55 0.311 0.003 0 273.1 0.336 0.003 318.3 293.2 0 0 0.2 2.8 2315 0 2 5 5 5 11 10 15 16 21 17 22 30 44 32 42 34 38 30 38 26 33 50 46 40 36 36 46 48 37 37 43 39 36 32 33 23 28 29 15 19 13 14 14 17 9 7 11 5 7 4 3 7 2 1 1 1 0 0 0
1090 190404 08:42:01 190404 08:43:01 1 1018 295.5 4.99 0.008 55 0.310 0.000 0 273.1 0.333 0.000 318.3 293.3 0 0 0.2 2.8 2315 0 4 4 6 8 12 11 20 15 21 19 24 24 33 41 35 28 36 30 49 36 37 48 47 25 47 44 28 37 37 36 41 34 33 29 21 21 20 19 23 16 19 12 12 6 8 10 5 7 7 5 2 3 3 3 2 1 2 0 0
1091 190404 08:43:19 190404 08:44:20 0 1018 295.5 5.00 0.008 55 0.310 0.000 0 273.1 0.333 0.000 318.2 293.2 0 0 0.1 2.8 2315 3 1 1 6 8 7 8 6 11 13 16 22 27 27 34 39 29 44 36 39 41 39 36 30 41 47 47 40 28 40 37 41 34 33 33 35 23 29 18 26 21 23 12 22 16 9 5 12 3 3 6 3 2 0 3 1 1 1 0 3
1092 190404 08:44:37 190404 08:45:38 1 1018 295.5 5.01 0.011 55 0.310 0.002 0 273.1 0.333 0.000 318.2 293.1 0 0 0.2 2.8 2314 1 2 6 3 12 6 10 15 12 21 25 19 30 33 33 34 35 33 32 31 37 33 38 34 31 27 36 42 42 35 38 41 38 31 32 34 25 30 22 21 23 21 9 19 9 12 5 14 8 3 5 2 2 0 1 3 0 0 0 0
1093 190404 08:45:55 190404 08:46:56 0 1018 295.5 5.01 0.012 55 0.310 0.000 0 273.1 0.333 0.000 318.2 293.1 0 0 0.2 2.8 2314 0 3 2 3 7 6 7 12 9 19 18 18 28 29 30 35 34 29 28 36 35 36 41 39 50 46 43 45 38 30 46 32 40 38 25 25 28 30 20 24 19 17 19 14 12 18 22 8 7 2 5 3 5 4 2 0 1 0 1 0
1094 190404 08:47:13 190404 08:48:14 1 1018 295.5 5.00 0.011 55 0.310 0.000 0 273.1 0.333 0.001 318.2 293.1 0 0 0.2 2.8 2314 2 1 2 2 8 12 7 7 22 22 22 19 20 37 32 47 42 33 33 38 49 30 36 41 43 52 43 29 53 39 31 41 41 25 22 31 30 20 19 28 18 16 22 10 14 8 10 4 7 7 3 3 4 3 1 0 2 3 0 1
1095 190404 08:48:31 190404 08:49:32 0 1018 295.5 5.00 0.009 55 0.310 0.000 0 273.1 0.333 0.001 318.2 293.1 0 0 0.1 2.8 2314 0 1 3 9 6 8 6 8 10 13 21 18 31 41 26 34 30 42 32 36 36 45 41 46 55 34 43 49 41 44 50 32 37 32 40 22 22 21 27 22 20 12 14 14 11 10 7 7 3 4 7 3 5 3 1 0 2 1 1 0
1096 190404 08:49:49 190404 08:50:50 1 1019 295.5 5.00 0.013 55 0.310 0.000 0 273.1 0.333 0.000 318.2 293.1 0 0 0.1 2.8 2315 2 3 3 11 10 6 6 13 15 15 33 20 23 34 22 28 29 31 38 41 29 39 37 32 45 40 36 47 44 31 39 32 38 42 28 34 24 16 14 21 15 15 12 10 10 11 7 6 7 5 0 2 0 0 1 0 0 1 0 1
1097 190404 08:51:07 190404 08:52:08 0 1019 295.5 4.99 0.008 55 0.310 0.001 0 273.1 0.333 0.000 318.2 293.1 0 0 0.1 2.8 2314 3 3 5 2 8 10 8 5 11 14 16 25 23 35 35 38 38 32 40 50 38 43 42 46 37 45 40 42 48 37 43 41 24 31 24 34 24 30 15 28 20 6 20 14 13 15 9 9 6 8 3 3 3 0 2 1 0 1 0 3
1098 190404 08:52:25 190404 08:53:26 1 1019 295.5 5.00 0.010 55 0.310 0.003 0 273.1 0.333 0.001 318.2 293.1 0 0 0.2 2.8 2314 5 2 1 11 8 6 13 13 17 19 19 30 23 36 41 33 39 46 31 39 35 35 34 41 45 54 43 36 36 34 36 22 23 33 32 21 21 21 19 18 17 15 13 10 9 18 8 8 8 3 8 4 0 0 1 2 2 0 0 0
1099 190404 08:53:43 190404 08:54:44 0 1019 295.5 5.01 0.009 55 0.310 0.000 0 273.1 0.333 0.000 318.2 293.1 0 0 0.2 2.8 2314 5 5 5 7 7 3 8 8 8 18 24 32 26 34 29 26 44 33 34 42 32 34 37 40 46 50 49 53 57 57 41 35 35 35 29 31 30 28 25 21 23 14 17 9 14 13 10 8 5 4 1 2 2 2 2 2 2 0 0 5
1100 190404 08:55:01 190404 08:56:02 1 1019 295.5 5.01 0.008 55 0.310 0.000 0 273.1 0.333 0.000 318.1 293.1 0 0 0.1 2.8 2315 2 4 5 3 4 11 5 17 17 14 22 25 31 34 39 35 39 51 40 25 41 38 35 39 48 48 46 54 39 50 35 38 36 28 35 35 22 35 27 19 12 24 10 13 15 6 10 3 8 3 3 6 4 4 5 0 2 1 0 2
1101 190404 08:56:20 190404 08:57:21 0 1018 295.5 5.00 0.012 55 0.310 0.000 0 273.1 0.333 0.001 318.1 293.0 0 0 0.1 2.8 2314 4 0 3 5 7 3 17 5 10 14 15 15 30 34 33 28 37 33 45 31 44 31 34 46 45 47 52 33 41 39 41 36 45 33 38 51 33 24 26 17 21 26 22 9 21 8 8 10 7 6 5 3 5 6 2 0 0 0 2 4
1102 190404 08:57:38 190404 08:58:39 1 1019 295.5 5.01 0.010 55 0.310 0.002 0 273.1 0.333 0.002 318.1 293.0 0 0 0.2 2.8 2315 3 8 4 5 7 13 16 10 12 25 18 19 30 40 29 36 38 36 40 54 44 44 45 47 44 44 45 39 41 51 41 44 34 34 35 28 13 30 19 18 13 20 15 13 16 9 9 8 7 7 6 2 3 3 0 0 0 0 1 0
1103 190404 08:58:56 190404 08:59:57 0 1019 295.5 5.00 0.012 55 0.310 0.001 0 273.1 0.333 0.000 318.1 293.0 0 0 0.2 2.8 2315 2 4 3 5 8 4 9 11 12 10 17 28 26 19 30 34 40 41 39 40 45 35 38 56 40 41 44 43 33 42 46 33 40 35 37 24 24 17 21 16 22 16 22 9 10 9 11 12 2 5 7 2 5 2 2 1 1 1 0 2
1104 190404 09:00:14 190404 09:01:15 1 1019 295.5 5.00 0.012 55 0.310 0.000 0 273.1 0.334 0.000 318.1 293.0 0 0 0.1 2.8 2315 5 7 7 7 10 9 16 12 23 23 24 25 29 22 36 34 42 39 55 32 37 37 49 46 39 45 47 42 41 46 40 30 38 31 29 26 36 19 22 19 15 22 8 13 8 13 6 12 5 1 6 7 6 1 1 1 0 0 0 1
1105 190404 09:01:32 190404 09:02:33 0 1019 295.5 5.01 0.009 55 0.310 0.000 0 273.1 0.333 0.000 318.1 293.0 0 0 0.2 2.8 2315 2 2 3 5 6 7 6 11 19 23 28 20 20 23 25 28 43 43 50 35 30 44 42 33 45 56 50 43 46 32 40 30 30 38 33 26 24 25 30 22 15 19 16 12 10 8 9 6 6 6 8 4 3 1 1 1 0 0 0 2
并且我需要将前四列转换为两列时间戳或日期时间以进行索引,起始日期时间和结束日期时间。
我尝试创建时间戳,但是它有点麻烦。所以'#StartDate'很长,所以我尝试使用pd.Dataframe.apply()
dint来提供结果,因此我应用了pd.to_datetime
并通过了 str 。我做了同样的事情,但是使用了 pd.Timestamp ,效果很好。但是它读错了。实际格式为YYMMDD,并且正在类型转换为```2004-04-19。从那时起,我有点迷失了。
data = pd.read_csv("./data.csv", skiprows=72)
data.columns = data.columns.str.strip()
data['#StartDate'] = data['#StartDate'].apply(str)
data['#StartDate'] = data['#StartDate'].apply(pd.Timestamp)
#data['#StartDate'] = data['#StartDate'].apply(t)
#data['#StartDate'] = pd.to_datetime(data['#StartDate'], format='%Y%m%d')
print data.tail(20).to_string()
这是我到目前为止的代码。
更新1: 这就是数据框现在的样子。
Start Datetime End Datetime ScanDirection Sheath_Press Sheath_Temp Sheath_Avg Sheath_Sdev Sheath_RH ColSamp_Avg ColSamp_Sdev ColSamp_RH ColSamp_Temp CPC_A_FlwAvg CPC_A_Sdev Sat_Temp Cond_Temp SEMS_Errors MCPC_Errors Impactr_Press Min_HV Max_HV Bin_Cnts1 Bin_Cnts2 Bin_Cnts3 Bin_Cnts4 Bin_Cnts5 Bin_Cnts6 Bin_Cnts7 Bin_Cnts8 Bin_Cnts9 Bin_Cnts10 Bin_Cnts11 Bin_Cnts12 Bin_Cnts13 Bin_Cnts14 Bin_Cnts15 Bin_Cnts16 Bin_Cnts17 Bin_Cnts18 Bin_Cnts19 Bin_Cnts20 Bin_Cnts21 Bin_Cnts22 Bin_Cnts23 Bin_Cnts24 Bin_Cnts25 Bin_Cnts26 Bin_Cnts27 Bin_Cnts28 Bin_Cnts29 Bin_Cnts30 Bin_Cnts31 Bin_Cnts32 Bin_Cnts33 Bin_Cnts34 Bin_Cnts35 Bin_Cnts36 Bin_Cnts37 Bin_Cnts38 Bin_Cnts39 Bin_Cnts40 Bin_Cnts41 Bin_Cnts42 Bin_Cnts43 Bin_Cnts44 Bin_Cnts45 Bin_Cnts46 Bin_Cnts47 Bin_Cnts48 Bin_Cnts49 Bin_Cnts50 Bin_Cnts51 Bin_Cnts52 Bin_Cnts53 Bin_Cnts54 Bin_Cnts55 Bin_Cnts56 Bin_Cnts57 Bin_Cnts58 Bin_Cnts59 Bin_Cnts60
1101 2004-04-19 08:56:20 2004-04-19 08:57:21 0 1018 295.5 5.00 0.012 55 0.31 0.000 0 273.1 0.333 0.001 318.1 293.0 0 0 0.1 2.8 2314 4 0 3 5 7 3 17 5 10 14 15 15 30 34 33 28 37 33 45 31 44 31 34 46 45 47 52 33 41 39 41 36 45 33 38 51 33 24 26 17 21 26 22 9 21 8 8 10 7 6 5 3 5 6 2 0 0 0 2 4
1102 2004-04-19 08:57:38 2004-04-19 08:58:39 1 1019 295.5 5.01 0.010 55 0.31 0.002 0 273.1 0.333 0.002 318.1 293.0 0 0 0.2 2.8 2315 3 8 4 5 7 13 16 10 12 25 18 19 30 40 29 36 38 36 40 54 44 44 45 47 44 44 45 39 41 51 41 44 34 34 35 28 13 30 19 18 13 20 15 13 16 9 9 8 7 7 6 2 3 3 0 0 0 0 1 0
1103 2004-04-19 08:58:56 2004-04-19 08:59:57 0 1019 295.5 5.00 0.012 55 0.31 0.001 0 273.1 0.333 0.000 318.1 293.0 0 0 0.2 2.8 2315 2 4 3 5 8 4 9 11 12 10 17 28 26 19 30 34 40 41 39 40 45 35 38 56 40 41 44 43 33 42 46 33 40 35 37 24 24 17 21 16 22 16 22 9 10 9 11 12 2 5 7 2 5 2 2 1 1 1 0 2
1104 2004-04-19 09:00:14 2004-04-19 09:01:15 1 1019 295.5 5.00 0.012 55 0.31 0.000 0 273.1 0.334 0.000 318.1 293.0 0 0 0.1 2.8 2315 5 7 7 7 10 9 16 12 23 23 24 25 29 22 36 34 42 39 55 32 37 37 49 46 39 45 47 42 41 46 40 30 38 31 29 26 36 19 22 19 15 22 8 13 8 13 6 12 5 1 6 7 6 1 1 1 0 0 0 1
1105 2004-04-19 09:01:32 2004-04-19 09:02:33 0 1019 295.5 5.01 0.009 55 0.31 0.000 0 273.1 0.333 0.000 318.1 293.0 0 0 0.2 2.8 2315 2 2 3 5 6 7 6 11 19 23 28 20 20 23 25 28 43 43 50 35 30 44 42 33 45 56 50 43 46 32 40 30 30 38 33 26 24 25 30 22 15 19 16 12 10 8 9 6 6 6 8 4 3 1 1 1 0 0 0 2
在帮助下能够解决我的许多问题,但错误地指出了日期。
更新2: 我设法从从向应用中添加lambda的日期开始读取的时间就修复了该格式。
data['#StartDate'] = data['#StartDate'].apply(str).apply(lambda x : datetime.datetime.strptime(x, '%y%m%d'))
data['EndDate'] = data['EndDate'].apply(str).apply(lambda x : datetime.datetime.strptime(x, '%y%m%d'))
答案 0 :(得分:2)
使用to_datetime
和to_timedelta
:
data['new_StartDate'] = (pd.to_datetime(data['StartDate'], format='%Y%m%d') +
pd.to_timedelta(data['StartTime']))
# similar for `EndDate` and `EndTime`