当我改变分类因素的水平时,SVM模型的预测不会改变。
假设因子A的水平为A1和A2,因子B的水平为B1和B2。 现在,当我将A的电平更改为A1时,会得到输出O1,但是当我将电平更改为A2时,我仍会得到相同的结果。 同样将B的电平更改为B1,得到输出P1,但是当我将电平更改为B2时,我继续获取P1。
可能是什么原因
我的模特基本上 19个参数由于一次编码而膨胀到193个。 大约有1600个数据点
#Pre Procesing
df = pd.read_csv("01.METADATA.csv")
cat_prams = ["LGTCOND", "PRECREVbin", "FIRSTCRA", "TRAFFLDT", "PREVEH", "CRITPRE", "AVOIDMAN", "GAD1", "MANUSE",
"SEATPOS", "PARTNERCLASSe"]
cont_prams = ['OAL',"OAW", 'DIRDAMW', 'MAX', 'VC_1ST', 'DV_1ST', "LANEOPP"]
HIS = ["HISPID"]
all_param = HIS + cont_prams + cat_prams
df = df[all_param]
df["HISPID"] = df["HISPID"].astype("category")
for cat_pram in cat_prams:
df[cat_pram] = df[cat_pram].astype("category")
df= df.dropna()
# ONE HOT ENCODING
cat_columns = cat_prams
df_onehot = pd.get_dummies(df, prefix_sep = "__", columns = cat_prams)
cat_dummies = [col for col in df_onehot if "__" in col and col.split("__")[0] in cat_columns]
processed_columns = list(df_onehot.columns[:])
df_onehot.to_csv("02_SVM_model_Input.csv")
#Train Test split
y = df_onehot["HISPID"]
col = df_onehot.columns[1:]
X = df_onehot[col]
order = X.columns
print(order)
# Normalizing the factors
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X = scaler.fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state=101)
linearmodel = SVC(kernel= "linear", probability= True).fit(X_train, y_train)
lin_predictions = linearmodel.predict(X_test)
print(classification_report(y_test,lin_predictions))
error_shift(lin_predictions, y_test)
#Creating an impulse in the actual data and predicting the outcome
print("\nShape of trainign: ", X_train.shape)
print("No of parameters used in training: ", X_train.shape[1], "\n")
dft = pd.read_csv("01.METADATA.csv")
dft = dft[all_param]
print(dft.iloc[:, 6].head())
dft.iloc[:, 6] = dft["DV_1ST"]*2
print(dft.iloc[:, 6].head())
for cat_pram in cat_prams:
dft[cat_pram] = dft[cat_pram].astype("category")
dft= dft.dropna()
print("dft Shape (after dropping rows with null):" , dft.shape)
dft_onehot = pd.get_dummies(dft, prefix_sep = "__", columns = cat_prams)
print("dft_onehot Shape (after creating dummies):" , dft_onehot.shape)
cat_dummies = [col for col in dft_onehot if "__" in col and col.split("__")[0] in cat_columns]
# Remove additional columns
print("---------------------")
for col in dft_onehot.columns:
if ("__" in col) and (col.split("__")[0] in cat_columns) and col not in processed_columns:
print("Removing feature {}".format(col))
dft_onehot.drop(col, axis=1, inplace=True)
print("---------------------")
print("dft_onehot Shape (after removing extra param):" , dft_onehot.shape)
#Add missing columns:
print("---------------------")
for col in processed_columns:
if col not in dft_onehot.columns:
print("Adding feature {}".format(col))
dft_onehot[col] = 0
print("---------------------")
print("dft_onehot Shape (after adding missing param):" , dft_onehot.shape)
yt = dft_onehot["HISPID"]
col = dft_onehot.columns[1:]
Xt = dft_onehot[col]
print("y Shape:" , yt.shape)
Xt = dft_onehot[dft_onehot.columns[1:]]
print("X Shape:" , Xt.shape)
Xt = Xt[order]
Xt.to_csv("Xt.csv")
Xt.head()
print(Xt.columns)
Xt = scaler.fit_transform(Xt)
new_predict = linearmodel.predict(Xt)
impulse_result = pd.DataFrame({'Actual': yt, 'Altered': new_predict })