我有一个由小时股价组成的大df。我希望找到最佳的买入价和卖出价以最大化收益(收入-成本)。我不知道最高的买/卖价格会是多少,因此我最初的猜测是在黑暗中疯狂地闯进来。
我尝试使用Scipy的“最小化”和“脸盆跳跃”。运行脚本时,我似乎陷入了局部井中,结果与最初的猜测相差无几。
关于如何解决此问题的任何想法?有没有更好的方法来编写代码,或者有更好的方法来使用。
下面的示例代码
import pandas as pd
import numpy as np
import scipy.optimize as optimize
df = pd.DataFrame({
'Time': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
'Price': [44, 100, 40, 110, 77, 109, 65, 93, 89, 49]})
# Create Empty Columns
df[['Qty', 'Buy', 'Sell', 'Cost', 'Rev']] = pd.DataFrame([[0.00, 0.00, 0.00, 0.00, 0.00]], index=df.index)
# Create Predicate to add fields
class Predicate:
def __init__(self):
self.prev_time = -1
self.prev_qty = 0
self.prev_buy = 0
self.prev_sell = 0
self.Qty = 0
self.Buy = 0
self.Sell = 0
self.Cost = 0
self.Rev = 0
def __call__(self, x):
if x.Time == self.prev_time:
x.Qty = self.prev_qty
x.Buy = self.prev_buy
x.Sell = self.prev_sell
x.Cost = x.Buy * x.Price
x.Rev = x.Sell * x.Price
else:
x.Qty = self.prev_qty + self.prev_buy - self.prev_sell
x.Buy = np.where(x.Price < buy_price, min(30 - x.Qty, 10), 0)
x.Sell = np.where(x.Price > sell_price, min(x.Qty, 10), 0)
x.Cost = x.Buy * x.Price
x.Rev = x.Sell * x.Price
self.prev_buy = x.Buy
self.prev_qty = x.Qty
self.prev_sell = x.Sell
self.prev_time = x.Time
return x
# Define function to minimize
def max_rev(params):
global buy_price
global sell_price
buy_price, sell_price = params
df2 = df.apply(Predicate(), axis=1)
return -1 * (df2['Rev'].sum() - df2['Cost'].sum())
# Run optimization
initial_guess = [40, 90]
result = optimize.minimize(fun=max_rev, x0=initial_guess, method='BFGS')
# result = optimize.basinhopping(func=max_rev, x0=initial_guess, niter=1000, stepsize=10)
print(result.x)
# Run the final results
result.x = buy_price, sell_price
df = df.apply(Predicate(), axis=1)
print(df)
print(df['Rev'].sum() - df['Cost'].sum())
答案 0 :(得分:1)
您没有提供太多细节,但我假设您考虑的是“完美的远见”收益最大化问题-即,您一开始就知道价格将如何发展。
这个问题很容易解决,但据我目前所知,您的问题不受限制-您可以通过以低价购买无限数量的产品并以较低的价格出售这些产品,从而获得可观的收入高价。
您需要添加一个约束条件,即您只能以有限数量的现金开始,并且只能卖出您拥有的股票(严格地说,这不是真的,可以在您所在的位置“卖空”立即出售东西,但期望值会下降(当您以后需要再次购买时)。
忽略卖空的恶作剧,您可以将优化问题表述为线性程序,如下所示:
import pandas as pd
import numpy as np
from pulp import *
# Problem Data
df = pd.DataFrame({
'Time': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
'Price': [44, 100, 40, 110, 77, 109, 65, 93, 89, 49]})
times = list(df.Time)
times_plus_1 = times + [times[-1] + 1]
# Instantiate maximisation problem
prob = LpProblem("numpy_constraints", LpMaximize)
# Create the problem vairables
# Cash in bank and stock-level at start of each interval
Cash = pulp.LpVariable.dicts("Cash", times_plus_1, cat='Continuous', lowBound=0)
Stock = pulp.LpVariable.dicts("Stock", times_plus_1, cat='Continuous', lowBound=0)
# Amount bought during interval
Buy = pulp.LpVariable.dicts("Buy", times, cat='Continuous')
# Add Objective to problem - cash at end of period modelled
prob += Cash[times_plus_1[-1]]
# Add constraints
# Start with a single dollar in the bank & no stock
prob += Cash[times[0]] == 1.0
prob += Stock[times[0]] == 0.0
# Cash & stock update rules
for t in times:
prob += Cash[t+1] == Cash[t] - Buy[t]*df.Price[t]
prob += Stock[t+1] == Stock[t] + Buy[t]
# Solve
prob.solve()
# Check when we bought when:
Buy_soln = np.array([Buy[t].varValue for t in times])
print("Buy_soln:")
print(Buy_soln)
Stock_soln = np.array([Stock[t].varValue for t in times_plus_1])
print("Stock_soln:")
print(Stock_soln)
Cash_soln = np.array([Cash[t].varValue for t in times_plus_1])
print("Cash_soln:")
print(Cash_soln)
结果如下:
Buy_soln:
[ 0.02272727 -0.02272727 0.05681818 -0.05681818 0.08116883 -0.08116883
0.13611389 -0.13611389 0. 0. ]
Stock_soln:
[0. 0.02272727 0. 0.05681818 0. 0.08116883
0. 0.13611389 0. 0. 0. ]
Cash_soln:
[ 1. 0. 2.2727273 0. 6.25 0.
8.8474026 0. 12.658591 12.658591 12.658591 ]
并不是特别有趣-可以预期使用所有可用现金来利用股价的任何上涨(低买高卖)。