我想将rpy
安装到我的conda安装中,但是出现UnsatisfiableError
$ conda install rpy2
Collecting package metadata (current_repodata.json): done
Solving environment: failed
Collecting package metadata (repodata.json): done
Solving environment: failed
UnsatisfiableError: The following specifications were found to be incompatible with each other:
- blas
- conda-forge/linux-64::statsmodels==0.10.1=py37hc1659b7_1 -> numpy[version='>=1.14.6,<2.0a0'] -> blas==1.0=mkl
- conda-forge/noarch::descartes==1.1.0=py_3 -> matplotlib -> numpy -> blas==1.0=mkl
- conda-forge/noarch::mizani==0.6.0=py_0 -> matplotlib[version='>=3.1.1'] -> numpy -> blas==1.0=mkl
- conda-forge/noarch::patsy==0.5.1=py_0 -> numpy[version='>=1.4.0'] -> blas==1.0=mkl
- conda-forge/noarch::plotnine==0.6.0=py_0 -> descartes[version='>=1.1.0'] -> matplotlib -> numpy -> blas==1.0=mkl
- mkl_fft -> blas==1.0=mkl
- mkl_random -> numpy[version='>=1.14.6,<2.0a0'] -> blas==1.0=mkl
- numpy -> blas==1.0=mkl
- numpy-base -> blas==1.0=mkl
- pkgs/main/linux-64::matplotlib==3.1.1=py37h5429711_0 -> numpy -> blas==1.0=mkl
- pkgs/main/linux-64::pandas==0.25.2=py37he6710b0_0 -> numpy[version='>=1.14.6,<2.0a0'] -> blas==1.0=mkl
- scipy -> blas==1.0=mkl
我尝试了其他的conda安装(例如使用conda-forge),但是我仍然收到UnsatisfiableError-尽管细节不同。
很有趣,用pip进行安装就可以了...
我已经安装了conda
# Name Version Build Channel
_libgcc_mutex 0.1 main
blas 1.0 mkl
ca-certificates 2019.9.11 hecc5488_0 conda-forge
certifi 2019.9.11 py37_0 conda-forge
cycler 0.10.0 py_2 conda-forge
dbus 1.13.6 he372182_0 conda-forge
descartes 1.1.0 py_3 conda-forge
expat 2.2.5 he1b5a44_1004 conda-forge
fontconfig 2.13.1 he4413a7_1000 conda-forge
freetype 2.10.0 he983fc9_1 conda-forge
gettext 0.19.8.1 hc5be6a0_1002 conda-forge
glib 2.58.3 h6f030ca_1002 conda-forge
gst-plugins-base 1.14.5 h0935bb2_0 conda-forge
gstreamer 1.14.5 h36ae1b5_0 conda-forge
icu 58.2 hf484d3e_1000 conda-forge
intel-openmp 2019.4 243
jpeg 9c h14c3975_1001 conda-forge
kiwisolver 1.1.0 py37hc9558a2_0 conda-forge
libedit 3.1.20181209 hc058e9b_0
libffi 3.2.1 hd88cf55_4
libgcc-ng 9.1.0 hdf63c60_0
libgfortran-ng 7.3.0 hdf63c60_0
libiconv 1.15 h516909a_1005 conda-forge
libpng 1.6.37 hed695b0_0 conda-forge
libstdcxx-ng 9.1.0 hdf63c60_0
libuuid 2.32.1 h14c3975_1000 conda-forge
libxcb 1.13 h14c3975_1002 conda-forge
libxml2 2.9.9 h13577e0_2 conda-forge
matplotlib 3.1.1 py37h5429711_0
mizani 0.6.0 py_0 conda-forge
mkl 2019.4 243
mkl-service 2.3.0 py37he904b0f_0
mkl_fft 1.0.14 py37ha843d7b_0
mkl_random 1.1.0 py37hd6b4f25_0
ncurses 6.1 he6710b0_1
numpy 1.17.2 py37haad9e8e_0
numpy-base 1.17.2 py37hde5b4d6_0
openssl 1.1.1c h516909a_0 conda-forge
palettable 3.3.0 py_0 conda-forge
pandas 0.25.2 py37he6710b0_0
patsy 0.5.1 py_0 conda-forge
pcre 8.43 he1b5a44_0 conda-forge
pip 19.3.1 py37_0
plotnine 0.6.0 py_0 conda-forge
pthread-stubs 0.4 h14c3975_1001 conda-forge
pyparsing 2.4.2 py_0 conda-forge
pyqt 5.9.2 py37hcca6a23_4 conda-forge
python 3.7.4 h265db76_1
python-dateutil 2.8.0 py37_0
pytz 2019.3 py_0
qt 5.9.7 h52cfd70_2 conda-forge
readline 7.0 h7b6447c_5
scipy 1.3.1 py37h7c811a0_0
setuptools 41.4.0 py37_0
sip 4.19.8 py37hf484d3e_0
six 1.12.0 py37_0
sqlite 3.30.1 h7b6447c_0
statsmodels 0.10.1 py37hc1659b7_1 conda-forge
tk 8.6.8 hbc83047_0
tornado 6.0.3 py37h516909a_0 conda-forge
wheel 0.33.6 py37_0
xorg-libxau 1.0.9 h14c3975_0 conda-forge
xorg-libxdmcp 1.1.3 h516909a_0 conda-forge
xz 5.2.4 h14c3975_4
zlib 1.2.11 h7b6447c_3