由于我习惯使用.nc
,因此我试图将.csv
文件转换为.csv
文件以在R中进行进一步分析。
基本上我想解决我的问题(下面有更多详细信息),我需要在_FillValue
文件中添加一个.nc
,但是我尝试过的所有方法都不起作用。
按照http://geog.uoregon.edu/bartlein/courses/geog490/week04-netCDF.html#replace-netcdf-fillvalues-with-r-nas中采取的步骤,我成功地对许多.nc
文件执行了此操作,直到第3.4.3节。
但是,我最近获得了对另一个.nc
文件的访问权限,并且同一过程无法正常运行。我想我已将其范围缩小到新的_FillValue
文件中没有.nc
的事实。
从外观上看,_FillValue
应该是“ 9.97e + 36”。我尝试使用
ncin <- nc_open(ncfname, write=T)
dname <- "tas"
Mvalue <- 9.97e+36
ncvar_change_missval(ncin, dname, Mvalue)
这似乎将missing_value:9.97e+36
添加到.nc
文件中。但是,当我运行:tmp_array <- ncvar_get(ncin,dname)
时,tmp_array仍然具有9.97e + 36。
我希望tmp_array可以将9.97e + 36替换为NA
,就像它可以工作的文件一样。
是否可以将_FillValue添加到我的文件中,以便用NA
替换这些值?
这是无法使用的文件信息:
> print(ncin)
File ./data/UKCP18/Mean_air_temperature_(tas)/.nc_files/tas_hadukgrid_uk_1km_mon_201801-201812.nc (NC_FORMAT_NETCDF4):
9 variables (excluding dimension variables):
double tas[projection_x_coordinate,projection_y_coordinate,time] (Contiguous storage)
standard_name: air_temperature
long_name: Mean air temperature
units: degC
description: Mean air temperature
label_units: C
level: 1.5m
plot_label: Mean air temperature at 1.5m (C)
cell_methods: time: mid_range within days time: mean over days
grid_mapping: transverse_mercator
coordinates: latitude longitude month_number season_year
missing_value: 9.97e+36
int transverse_mercator[] (Contiguous storage)
grid_mapping_name: transverse_mercator
longitude_of_prime_meridian: 0
semi_major_axis: 6377563.396
semi_minor_axis: 6356256.909
longitude_of_central_meridian: -2
latitude_of_projection_origin: 49
false_easting: 4e+05
false_northing: -1e+05
scale_factor_at_central_meridian: 0.9996012717
double time_bnds[bnds,time] (Contiguous storage)
double projection_y_coordinate_bnds[bnds,projection_y_coordinate] (Contiguous storage)
double projection_x_coordinate_bnds[bnds,projection_x_coordinate] (Contiguous storage)
8 byte int month_number[time] (Contiguous storage)
units: 1
long_name: month_number
8 byte int season_year[time] (Contiguous storage)
units: 1
long_name: season_year
double latitude[projection_x_coordinate,projection_y_coordinate] (Contiguous storage)
units: degrees_north
standard_name: latitude
double longitude[projection_x_coordinate,projection_y_coordinate] (Contiguous storage)
units: degrees_east
standard_name: longitude
4 dimensions:
time Size:12
axis: T
bounds: time_bnds
units: hours since 1800-01-01 00:00:00
standard_name: time
calendar: gregorian
projection_y_coordinate Size:1450
axis: Y
bounds: projection_y_coordinate_bnds
units: m
standard_name: projection_y_coordinate
projection_x_coordinate Size:900
axis: X
bounds: projection_x_coordinate_bnds
units: m
standard_name: projection_x_coordinate
bnds Size:2
11 global attributes:
_NCProperties: version=1|netcdflibversion=4.6.1|hdf5libversion=1.10.2
comment: Monthly resolution gridded climate observations
creation_date: 2019-08-09T20:34:33
frequency: mon
institution: Met Office
references: doi: 10.1002/joc.1161
short_name: monthly_meantemp
source: HadUK-Grid_v1.0.1.0
title: Gridded surface climate observations data for the UK
version: v20190808
Conventions: CF-1.5
答案 0 :(得分:0)
我找到了灵魂。我以为我会在这里发布,以防有人发现自己也被卡住!
我意识到,也许missing_value
不仅是9.97e+36
,而且还有更多的小数点。我用它来查找完整的missing_value
,然后将其设置为missing_value
,这样ncvar_get()
就可以正常工作了。
ncin <- nc_open(ncfname, write=T)
print(ncin)
tmp_array <- ncvar_get(ncin,dname) # This produced an array with the missing value inserted - should be replaced with NAs
# What is the missing value up to 100 decimal points?!
sprintf("%.100f", tmp_array[1,1,1])
# Set missing value
Mvalue <- 9.969209968386869047442886268468442020e+36
# insert missing_value to .nc file
ncvar_change_missval(ncin, dname, Mvalue)
print(ncin)
# make new array with values replaced with NAs
tmp_array <- ncvar_get(ncin,dname)
然后我继续遵循http://geog.uoregon.edu/bartlein/courses/geog490/week04-netCDF.html#replace-netcdf-fillvalues-with-r-nas中概述的过程,直到3.4.3产生我的.csv
Ph!谢谢大家:)