我有一个雨量计记录的数据。它记录0.2 l / m2的事件及其发生的日期。经过一些处理后,我的数据如下所示:
head(df)
V2 V3 V4
1 2018-10-08 11:54:43 1 0.2
2 2018-10-08 12:49:21 2 0.2
3 2018-10-08 15:55:33 3 0.2
4 2018-10-08 16:43:37 4 0.2
5 2018-10-08 16:47:41 5 0.2
6 2018-10-08 16:56:44 6 0.2
请注意,第V2列是事件发生的日期,第V3列是事件的累计计数,我按事件将V4列的值添加为l / m2。
我想按规则的日期顺序对V4列的值求和,例如每小时(或每天,或任何其他时间段),用没有事件的那些时间段“零”填充
要获得类似的东西
date rain
1 2018-10-08 11:00:00 0.2
2 2018-10-08 12:00:00 0.2
3 2018-10-08 13:00:00 0.0
4 2018-10-08 14:00:00 0.0
5 2018-10-08 15:00:00 0.2
6 2018-10-08 16:00:00 0.6
我确实解决了这个问题,但是以一种非常复杂的方式(请参见下面的代码)。有直接的方法吗?
df$date<-round.POSIXt(df$V2, units = "hour")
library(xts)
df.xts <- xts(df$V4,as.POSIXct(df$date))
hourly<-period.apply(df.xts,endpoints(df$date,"hours"),sum)
hourly<-as.data.frame(hourly)
hourly$date<-as.POSIXct(rownames(hourly))
ref<- data.frame(date=seq.POSIXt(from=min(df$date),to=max(df$date),by="hour"))
all<-merge(hourly,ref,by="date",all.y = TRUE)
all$V1[is.na(all$V1)]<-0
答案 0 :(得分:1)
您可以使用tidyverse
:
library(tidyverse)
x <- df %>%
group_by(date = floor_date(as.POSIXct(V2), "1 hour")) %>%
summarize(rain = sum(V4))
然后填写缺少的时间:
x <- as_tibble(seq(min(x$date), max(x$date), by = "hour")) %>%
left_join(., x, by = c("value" = "date")) %>%
replace_na(list(rain = 0))
# value rain
# <dttm> <dbl>
#1 2018-10-08 11:00:00 0.2
#2 2018-10-08 12:00:00 0.2
#3 2018-10-08 13:00:00 0
#4 2018-10-08 14:00:00 0
#5 2018-10-08 15:00:00 0.2
#6 2018-10-08 16:00:00 0.6
df <- structure(list(V2 = structure(1:6, .Label = c(" 2018-10-08 11:54:43",
" 2018-10-08 12:49:21", " 2018-10-08 15:55:33", " 2018-10-08 16:43:37",
" 2018-10-08 16:47:41", " 2018-10-08 16:56:44"), class = "factor"),
V3 = 1:6, V4 = c(0.2, 0.2, 0.2, 0.2, 0.2, 0.2)), class = "data.frame", row.names = c(NA,
-6L))