我正在尝试运行一个脚本,该脚本使用加权KNN离群值来执行离群值检测,但始终出现以下错误:
apply错误(kNNdist(x = dat,k = k),1,平均值):
dim(X)必须为正长度
我尝试运行的脚本如下。这是一个脚本块,但是我在导致错误的脚本部分的正上方添加了一个注释,即函数:
WKNN_Outlier <- apply(kNNdist(x=dat, k = k), 1, mean)
如果有人对无监督的异常值检测有任何更好或更简单的主意,那么我真是无所不能(可以说...)
library(dbscan)
library(ggplot2)
set.seed(0)
x11 <- rnorm(n = 100, mean = 10, sd = 1) # Cluster 1 (x1 coordinate)
x21 <- rnorm(n = 100, mean = 10, sd = 1) # Cluster 1 (x2 coordinate)
x12 <- rnorm(n = 100, mean = 20, sd = 1) # Cluster 2 (x1 coordinate)
x22 <- rnorm(n = 100, mean = 10, sd = 1) # Cluster 2 (x2 coordinate)
x13 <- rnorm(n = 100, mean = 15, sd = 3) # Cluster 3 (x1 coordinate)
x23 <- rnorm(n = 100, mean = 25, sd = 3) # Cluster 3 (x2 coordinate)
x14 <- rnorm(n = 50, mean = 25, sd = 1) # Cluster 4 (x1 coordinate)
x24 <- rnorm(n = 50, mean = 25, sd = 1) # Cluster 4 (x2 coordinate)
dat <- data.frame(x1 = c(x11,x12,x13,x14), x2 = c(x21,x22,x23,x24))
( g0a <- ggplot() + geom_point(data=dat, mapping=aes(x=x1, y=x2), shape = 19) )
k <- 4 # KNN parameter
top_n <- 20 # No. of top outliers to be displayed
KNN_Outlier <- kNNdist(x=dat, k = k)
rank_KNN_Outlier <- order(x=KNN_Outlier, decreasing = TRUE) # Sorting (descending)
KNN_Result <- data.frame(ID = rank_KNN_Outlier, score = KNN_Outlier[rank_KNN_Outlier])
head(KNN_Result, top_n)
graph <- g0a +
geom_point(data=dat[rank_KNN_Outlier[1:top_n],], mapping=aes(x=x1,y=x2), shape=19,
color="red", size=2) +
geom_text(data=dat[rank_KNN_Outlier[1:top_n],],
mapping=aes(x=(x1-0.5), y=x2, label=rank_KNN_Outlier[1:top_n]), size=2.5)
graph
## Use KNNdist() to calculate the weighted KNN outlier score
k <- 4 # KNN parameter
top_n <- 20 # No. of top outliers to be displayed
下面的WKNN_Outler函数是导致错误的原因。据我所知,apply函数应该没有任何问题,因为数据(dat)被转换为data.frame,这应该可以防止错误,但不会。
WKNN_Outlier <- apply(kNNdist(x=dat, k = k), 1, mean) # Weighted KNN outlier score (mean)
rank_WKNN_Outlier <- order(x=WKNN_Outlier, decreasing = TRUE)
WKNN_Result <- data.frame(ID = rank_WKNN_Outlier, score = WKNN_Outlier[rank_WKNN_Outlier])
head(WKNN_Result, top_n)
ge1 <- g0a +
geom_point(data=dat[rank_WKNN_Outlier[1:top_n],], mapping=aes(x=x1,y=x2), shape=19,
color="red", size=2) +
geom_text(data=dat[rank_WKNN_Outlier[1:top_n],],
mapping=aes(x=(x1-0.5), y=x2, label=rank_WKNN_Outlier[1:top_n]), size=2.5)
ge1
答案 0 :(得分:1)
函数kNNdist(x=dat, k = k)
产生的向量不是矩阵,这就是为什么当您尝试执行apply
函数时会告诉您dim(X) must have a positive length
(向量具有NULL
暗角的原因)。
尝试:
WKNN_Outlier <- apply(kNNdist(x=dat, k = k, all=T), 1, mean)