使用Keras和Tensorflow在Python中尝试CNN代码

时间:2019-10-28 08:09:04

标签: python tensorflow keras

我将在下面向您显示预定义的代码。

    from __future__ import division
    import os, keras 
    os.environ["KERAS_BACKEND"] = "theano"
    os.environ["THEANO_FLAGS"]  = "device=gpu%d"%(1)
    import numpy as np
    import theano as th
    import theano.tensor as T
    from keras.utils import np_utils
    import keras.models as models
    from keras.layers.core import Reshape,Dense,Dropout,Activation
    from keras.optimizers import adam
    from scipy.io import loadmat, savemat
    import os.path
    from keras import backend as K    

# Model training function
def train(In_train, Out_train, In_test, Out_test,
          nb_epoch, batch_size,dr,
          num_hidden_layers, nodes_per_layer,
          loss_fn,n_BS,n_beams):

    in_shp = list(In_train.shape[1:])

    AP_models = []

    for idx in range(0, n_BS*n_beams-2, n_beams):
        idx_str = str(idx / n_beams + 1)

        model = models.Sequential()
        model.add(Dense(nodes_per_layer, activation='relu', init='he_normal',
                  name="dense" + idx_str + "1", input_shape=in_shp))
        model.add(Dropout(dr))
        for h in range(num_hidden_layers):
            model.add(Dense(nodes_per_layer, activation='relu',
                      init='he_normal', name="dense" + idx_str + "h" + str(h)))
            model.add(Dropout(dr))

        model.add(Dense(n_beams, activation='relu', init='he_normal',
                  name="dense" + idx_str + "o"))
        model.compile(loss=loss_fn, optimizer='adam')
        model.summary()
        # perform training ...
        earlyStoppingCallback = \
            keras.callbacks.EarlyStopping(monitor='val_loss',
                                          patience=5,
                                          verbose=0,
                                          mode='auto')
        filepath = 'DLCB_code_output/Results_mmWave_ML'+str(idx)
        history = model.fit(In_train,
                            Out_train[:, idx:idx + n_beams],
                            batch_size=batch_size,
                            nb_epoch=nb_epoch,
                            verbose=2,
                            validation_data=(In_test, Out_test[:,idx:idx + n_beams]),
                            callbacks = [
                                keras.callbacks.ModelCheckpoint(filepath, monitor='val_loss', verbose=0, save_best_only=True, mode='auto'),
                                keras.callbacks.EarlyStopping(monitor='val_loss', patience=5, verbose=0, mode='auto')
                            ])

        # we re-load the best weights once training is finished
        model.load_weights(filepath)

        AP_models.append(model)


    return AP_models

# Reading input and output sets generated from MATLAB
In_set_file=loadmat('DLCB_dataset/DLCB_input.mat')
Out_set_file=loadmat('DLCB_dataset/DLCB_output.mat')

In_set=In_set_file['DL_input']
Out_set=Out_set_file['DL_output']

# Parameter initialization
num_user_tot=In_set.shape[0]
n_DL_size=[.001,.05,.1,.15,.2,.25,.3,.35,.4,.45,.5,.55,.6,.65,.7,.75,.8]
count=0
num_tot_TX=4
num_beams=128

for DL_size_ratio in n_DL_size:

    print (DL_size_ratio)
    count=count+1
    DL_size=int(num_user_tot*DL_size_ratio)

    np.random.seed(2016)
    n_examples = DL_size
    num_train  = int(DL_size * 0.8)
    num_test   = int(num_user_tot*.2)

    train_index = np.random.choice(range(0,num_user_tot), size=num_train, replace=False)
    rem_index = set(range(0,num_user_tot))-set(train_index)
    test_index= list(set(np.random.choice(list(rem_index), size=num_test, replace=False)))

    In_train = In_set[train_index]
    In_test =  In_set[test_index] 

    Out_train = Out_set[train_index]
    Out_test = Out_set[test_index]


# Learning model parameters
nb_epoch = 10     
batch_size = 100  
dr = 0.05                  # dropout rate  
num_hidden_layers=4
nodes_per_layer=In_train.shape[1]
loss_fn='mean_squared_error'

# Model training
AP_models = train(In_train, Out_train, In_test, Out_test,
                                      nb_epoch, batch_size,dr,
                                      num_hidden_layers, nodes_per_layer,
                                      loss_fn,num_tot_TX,num_beams)


# Model running/testing
DL_Result={}
for id in range(0,num_tot_TX,1): 
    beams_predicted=AP_models[id].predict( In_test, batch_size=10, verbose=0)

    DL_Result['TX'+str(id+1)+'Pred_Beams']=beams_predicted
    DL_Result['TX'+str(id+1)+'Opt_Beams']=Out_test[:,id*num_beams:(id+1)*num_beams]

DL_Result['user_index']=test_index
savemat('DLCB_code_output/DL_Result'+str(count),DL_Result)

UnboundLocalError:分配前已引用本地变量'batch_index'

如您在上面看到的,有关于“ batch_index”的错误消息。 我通过互联网搜索,我认为本地/全局变量存在问题。 相反,我没有在代码中使用变量'batch_index'。 我不知道该如何解决这个问题。

0 个答案:

没有答案