我将在下面向您显示预定义的代码。
from __future__ import division
import os, keras
os.environ["KERAS_BACKEND"] = "theano"
os.environ["THEANO_FLAGS"] = "device=gpu%d"%(1)
import numpy as np
import theano as th
import theano.tensor as T
from keras.utils import np_utils
import keras.models as models
from keras.layers.core import Reshape,Dense,Dropout,Activation
from keras.optimizers import adam
from scipy.io import loadmat, savemat
import os.path
from keras import backend as K
# Model training function
def train(In_train, Out_train, In_test, Out_test,
nb_epoch, batch_size,dr,
num_hidden_layers, nodes_per_layer,
loss_fn,n_BS,n_beams):
in_shp = list(In_train.shape[1:])
AP_models = []
for idx in range(0, n_BS*n_beams-2, n_beams):
idx_str = str(idx / n_beams + 1)
model = models.Sequential()
model.add(Dense(nodes_per_layer, activation='relu', init='he_normal',
name="dense" + idx_str + "1", input_shape=in_shp))
model.add(Dropout(dr))
for h in range(num_hidden_layers):
model.add(Dense(nodes_per_layer, activation='relu',
init='he_normal', name="dense" + idx_str + "h" + str(h)))
model.add(Dropout(dr))
model.add(Dense(n_beams, activation='relu', init='he_normal',
name="dense" + idx_str + "o"))
model.compile(loss=loss_fn, optimizer='adam')
model.summary()
# perform training ...
earlyStoppingCallback = \
keras.callbacks.EarlyStopping(monitor='val_loss',
patience=5,
verbose=0,
mode='auto')
filepath = 'DLCB_code_output/Results_mmWave_ML'+str(idx)
history = model.fit(In_train,
Out_train[:, idx:idx + n_beams],
batch_size=batch_size,
nb_epoch=nb_epoch,
verbose=2,
validation_data=(In_test, Out_test[:,idx:idx + n_beams]),
callbacks = [
keras.callbacks.ModelCheckpoint(filepath, monitor='val_loss', verbose=0, save_best_only=True, mode='auto'),
keras.callbacks.EarlyStopping(monitor='val_loss', patience=5, verbose=0, mode='auto')
])
# we re-load the best weights once training is finished
model.load_weights(filepath)
AP_models.append(model)
return AP_models
# Reading input and output sets generated from MATLAB
In_set_file=loadmat('DLCB_dataset/DLCB_input.mat')
Out_set_file=loadmat('DLCB_dataset/DLCB_output.mat')
In_set=In_set_file['DL_input']
Out_set=Out_set_file['DL_output']
# Parameter initialization
num_user_tot=In_set.shape[0]
n_DL_size=[.001,.05,.1,.15,.2,.25,.3,.35,.4,.45,.5,.55,.6,.65,.7,.75,.8]
count=0
num_tot_TX=4
num_beams=128
for DL_size_ratio in n_DL_size:
print (DL_size_ratio)
count=count+1
DL_size=int(num_user_tot*DL_size_ratio)
np.random.seed(2016)
n_examples = DL_size
num_train = int(DL_size * 0.8)
num_test = int(num_user_tot*.2)
train_index = np.random.choice(range(0,num_user_tot), size=num_train, replace=False)
rem_index = set(range(0,num_user_tot))-set(train_index)
test_index= list(set(np.random.choice(list(rem_index), size=num_test, replace=False)))
In_train = In_set[train_index]
In_test = In_set[test_index]
Out_train = Out_set[train_index]
Out_test = Out_set[test_index]
# Learning model parameters
nb_epoch = 10
batch_size = 100
dr = 0.05 # dropout rate
num_hidden_layers=4
nodes_per_layer=In_train.shape[1]
loss_fn='mean_squared_error'
# Model training
AP_models = train(In_train, Out_train, In_test, Out_test,
nb_epoch, batch_size,dr,
num_hidden_layers, nodes_per_layer,
loss_fn,num_tot_TX,num_beams)
# Model running/testing
DL_Result={}
for id in range(0,num_tot_TX,1):
beams_predicted=AP_models[id].predict( In_test, batch_size=10, verbose=0)
DL_Result['TX'+str(id+1)+'Pred_Beams']=beams_predicted
DL_Result['TX'+str(id+1)+'Opt_Beams']=Out_test[:,id*num_beams:(id+1)*num_beams]
DL_Result['user_index']=test_index
savemat('DLCB_code_output/DL_Result'+str(count),DL_Result)
UnboundLocalError:分配前已引用本地变量'batch_index'
如您在上面看到的,有关于“ batch_index”的错误消息。 我通过互联网搜索,我认为本地/全局变量存在问题。 相反,我没有在代码中使用变量'batch_index'。 我不知道该如何解决这个问题。