我以前曾问过一个问题,认为问题出在我的模型体系结构上,并被告知问题可能出在我的培训/预测代码中。我在那儿张贴了该代码,但没有得到进一步的答案。我的模型显示的精度为0.9530581049962875,损失为0.2506975952616229。但是,当我给它进行图像分类时,每次都会得到相同的预测。图片为64x64,带有三个通道
这是我的训练和预测代码
batch_size = 60
pic_size = 64
train_datagen = ImageDataGenerator()
test_datagen = ImageDataGenerator()
train_generator = train_datagen.flow_from_directory(
'/DATASET/Training_Samples',
target_size=(64, 64),
color_mode='rgb',
batch_size=batch_size,
class_mode="categorical",
shuffle=True)
validation_generator = test_datagen.flow_from_directory(
'/DATASET/Test_Samples',
target_size=(64, 64),
color_mode='rgb',
batch_size=batch_size,
class_mode="categorical",
shuffle=False)
history = model.fit_generator(generator=train_generator,
steps_per_epoch=train_generator.n//train_generator.batch_size,
epochs=150,
validation_data=validation_generator,
validation_steps = validation_generator.n//validation_generator.batch_size)
from skimage.transform import resize
import matplotlib.pyplot as plt
%matplotlib inline
my_image = plt.imread('image.jpg')
my_image_resized = resize(my_image, (64,64,3))
import numpy as np
probabilities = model.predict(np.array( [my_image_resized,] ))
print(probabilities)