我正在使用Pytorch文档(https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html),但我并不真正理解他们为什么要制作仿射层(16 * 6 * 6,120)。我知道卷积层的最后输出是16,这里的输出是120,但是即使带有注释,我也不知道6 * 6的来源。有人可以解释吗?
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 1 input image channel, 6 output channels, 3x3 square convolution
# kernel
self.conv1 = nn.Conv2d(1, 6, 3)
self.conv2 = nn.Conv2d(6, 16, 3)
# an affine operation: y = Wx + b
self.fc1 = nn.Linear(16 * 6 * 6, 120) # 6*6 from image dimension
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
# Max pooling over a (2, 2) window
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
# If the size is a square you can only specify a single number
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def num_flat_features(self, x):
size = x.size()[1:] # all dimensions except the batch dimension
num_features = 1
for s in size:
num_features *= s
return num_features
net = Net()
print(net)
答案 0 :(得分:2)
6x6
来自x
的高度和宽度,经过它们的卷积和maxpool之后。
这里是简化的版本,您可以在其中查看形状在每个点上的变化。在示例中打印形状可能会有所帮助,这样您就可以准确了解所有变化。
import torch
import torch.nn as nn
import torch.nn.functional as F
conv1 = nn.Conv2d(1, 6, 3)
conv2 = nn.Conv2d(6, 16, 3)
# Making a pretend input similar to theirs.
# We define an input with 1 batch, 1 channel, height 32, width 32
x = torch.ones((1,1,32,32))
# Simulating forward()
x = F.max_pool2d(F.relu(conv1(x)), (2, 2))
print(x.shape) # torch.Size([1, 6, 15, 15]) 1 batch, 6 channels, height 15, width 15
x = F.max_pool2d(F.relu(conv2(x)), 2)
print(x.shape) # torch.Size([1, 16, 6, 6]) 1 batch, 16 channels, height 6, width 6
接下来,他们将x
展平并通过fc1
接受16*6*6
并产生120
的输出。