我正在尝试对鱼眼镜头的图像进行校准和不失真。
我的代码是:
import cv2
import os
import numpy as np
CHECKERBOARD = (5,7)
subpix_criteria = (cv2.TERM_CRITERIA_EPS+cv2.TERM_CRITERIA_MAX_ITER, 30, 0.1)
calibration_flags = cv2.fisheye.CALIB_RECOMPUTE_EXTRINSIC+cv2.fisheye.CALIB_CHECK_COND+cv2.fisheye.CALIB_FIX_SKEW
R = np.zeros((1, 1, 3), dtype=np.float64)
T = np.zeros((1, 1, 3), dtype=np.float64)
objp = np.zeros( (CHECKERBOARD[0]*CHECKERBOARD[1], 1, 3) , np.float64)
objp[:,0, :2] = np.mgrid[0:CHECKERBOARD[0], 0:CHECKERBOARD[1]].T.reshape(-1, 2)
_img_shape = None
objpoints = [] # 3d point in real world space
imgpoints = []
N_OK = len(objpoints)
images = os.listdir('./images/')
for fname in images:
img = cv2.imread(fname)
img = cv2.imread('./images/'+fname)
#print(fname + str(os.path.exists('./images/'+fname)))
ext = os.path.splitext(fname)[-1].lower()
if ext == ".jpg":
print(img.shape[:2])
if _img_shape == None:
_img_shape = img.shape[:2]
else:
assert _img_shape == img.shape[:2], "All images must share the same size."
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
ret, corners = cv2.findChessboardCorners(gray, CHECKERBOARD,cv2.CALIB_CB_ADAPTIVE_THRESH+cv2.CALIB_CB_FAST_CHECK+cv2.CALIB_CB_NORMALIZE_IMAGE)
if ret == True:
objpoints.append(objp)
cv2.cornerSubPix(gray,corners,(3,3),(-1,-1),subpix_criteria)
imgpoints.append(corners)
N_OK = len(objpoints)
K = np.zeros((3, 3))
D = np.zeros((4, 1))
rvecs = [np.zeros((1, 1, 3), dtype=np.float64) for i in range(N_OK)]
tvecs = [np.zeros((1, 1, 3), dtype=np.float64) for i in range(N_OK)]
rms, K, D, rvecs, tvecs = \
cv2.fisheye.calibrate(
objpoints,
imgpoints,
gray.shape[::-1],
K,
D,
rvecs,
tvecs,
calibration_flags,
(cv2.TERM_CRITERIA_EPS+cv2.TERM_CRITERIA_MAX_ITER, 30, 1e-6)
)
DIM=_img_shape[::-1]
K=np.array(K.tolist())
D=np.array(D.tolist())
并具有不失真的功能:
def undistort(img_path):
img = cv2.imread(img_path)
h,w = img.shape[:2]
nk = K.copy()
map1, map2 = cv2.fisheye.initUndistortRectifyMap(K, D, np.eye(3), K, DIM, cv2.CV_16SC2)
undistorted_img = cv2.remap(img, map1, map2, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT)
cv2.imwrite('calibresult1.png',undistorted_img)
它给出以下图像: undistorted image
原始图片为: original image
中心似乎没有变形,但是角落变形了,图像本身也被裁剪了。 我不确定校准过程是否正确。如果有人有经验,请看一下代码并发现错误,我将很高兴。
答案 0 :(得分:0)
快速答案:校准错误。您获得的失真图像具有(非常)错误的本征和畸变系数。
抱歉,我没有调试您的代码,但是代码可以正常运行,但仍无法正确校准。并非所有代码都是代码:您必须选择有用的棋盘姿势和许多图像以改善校准。
建议:通过鱼眼镜头校准,让我们开始尝试仅获取内部特征(相机中心和焦点),并避免计算失真系数。