我正在尝试计算表中每个月的唯一ID数。但是要注意的是,每个月的ID数量应仅包括上个月不存在的ID
我正在尝试编写一个SQL查询,该查询将在Google BigQuery中运行,但到目前为止,我只想出了如何获取每月不同ID的数量。我无法弄清楚如何获得上个月不存在的ID的条件。
例如我有一个像下面的桌子 tbl1:
time_stamp | ID | col3 | col4
-------------------------------
2019-06-10 | 1 | 10 | 20
2019-06-10 | 2 | 11 | 21
2019-06-10 | 3 | 12 | 22
2019-07-10 | 2 | 11 | 21
2019-07-10 | 4 | 13 | 23
2019-08-10 | 4 | 13 | 23
2019-08-10 | 5 | 14 | 24
2019-09-10 | 5 | 14 | 24
2019-09-10 | 6 | 15 | 25
预期产量
time_stamp | count
--------------------
2019-06-10 | 3
2019-07-10 | 1
2019-08-10 | 1
2019-09-10 | 1
答案 0 :(得分:1)
更新
我意识到-您要求的count of IDs for each month should only include IDs which were not present in the
上个月-不是前个月,而是月
下面是解决方法
#standardSQL
SELECT month, COUNT(1) users
FROM (
SELECT *, IFNULL(DATE_DIFF(month, LAG(month) OVER(PARTITION BY ID ORDER BY month), MONTH), 0) != 1 qualified
FROM (
SELECT DISTINCT DATE_TRUNC(time_stamp, MONTH) month, ID FROM `project.dataset.table`
)
)
WHERE qualified
GROUP BY month
您可以使用下面的示例数据进行测试
#standardSQL
WITH `project.dataset.table` AS (
SELECT DATE '2019-06-10' time_stamp, 1 ID, 10 col3, 20 col4 UNION ALL
SELECT '2019-06-10', 2, 11, 21 UNION ALL
SELECT '2019-06-10', 3, 12, 22 UNION ALL
SELECT '2019-06-11', 3, 12, 22 UNION ALL
SELECT '2019-07-10', 2, 11, 21 UNION ALL
SELECT '2019-07-10', 4, 13, 23 UNION ALL
SELECT '2019-08-10', 1, 13, 23 UNION ALL
SELECT '2019-08-10', 4, 13, 23 UNION ALL
SELECT '2019-08-10', 5, 14, 24 UNION ALL
SELECT '2019-09-10', 5, 14, 24 UNION ALL
SELECT '2019-09-10', 6, 15, 25
)
SELECT month, COUNT(1) users
FROM (
SELECT *, IFNULL(DATE_DIFF(month, LAG(month) OVER(PARTITION BY ID ORDER BY month), MONTH), 0) != 1 qualified
FROM (
SELECT DISTINCT DATE_TRUNC(time_stamp, MONTH) month, ID FROM `project.dataset.table`
)
)
WHERE qualified
GROUP BY month
-- ORDER BY month
有结果
Row month users
1 2019-06-01 3
2 2019-07-01 1
3 2019-08-01 2
4 2019-09-01 1
希望,这次是您的要求!
初始答案 以下是用于BigQuery标准SQL的信息,它返回前几个月未显示的用户数
#standardSQL
SELECT time_stamp, COUNT(1) `count`
FROM (
SELECT *, COUNT(1) OVER(PARTITION BY ID ORDER BY time_stamp) = 1 first_entry
FROM `project.dataset.table`
)
WHERE first_entry
GROUP BY time_stamp
如果要应用于您的问题的样本数据-输出为
Row time_stamp count
1 2019-06-10 3
2 2019-07-10 1
3 2019-08-10 1
4 2019-09-10 1
您可以使用下面的示例进行测试
#standardSQL
WITH `project.dataset.table` AS (
SELECT DATE '2019-06-10' time_stamp, 1 ID, 10 col3, 20 col4 UNION ALL
SELECT '2019-06-10', 2, 11, 21 UNION ALL
SELECT '2019-06-10', 3, 12, 22 UNION ALL
SELECT '2019-07-10', 2, 11, 21 UNION ALL
SELECT '2019-07-10', 4, 13, 23 UNION ALL
SELECT '2019-08-10', 4, 13, 23 UNION ALL
SELECT '2019-08-10', 5, 14, 24 UNION ALL
SELECT '2019-09-10', 5, 14, 24 UNION ALL
SELECT '2019-09-10', 6, 15, 25
)
SELECT time_stamp, COUNT(1) `count`
FROM (
SELECT *, COUNT(1) OVER(PARTITION BY ID ORDER BY time_stamp) = 1 first_entry
FROM `project.dataset.table`
)
WHERE first_entry
GROUP BY time_stamp
-- ORDER BY time_stamp
万一您需要按月还是按日期分组(问题尚不清楚)
#standardSQL
WITH `project.dataset.table` AS (
SELECT DATE '2019-06-10' time_stamp, 1 ID, 10 col3, 20 col4 UNION ALL
SELECT '2019-06-11', 2, 11, 21 UNION ALL
SELECT '2019-06-12', 3, 12, 22 UNION ALL
SELECT '2019-07-10', 2, 11, 21 UNION ALL
SELECT '2019-07-11', 4, 13, 23 UNION ALL
SELECT '2019-08-10', 4, 13, 23 UNION ALL
SELECT '2019-08-12', 5, 14, 24 UNION ALL
SELECT '2019-09-10', 5, 14, 24 UNION ALL
SELECT '2019-09-13', 6, 15, 25
)
SELECT DATE_TRUNC(time_stamp, MONTH) month, COUNT(1) `count`
FROM (
SELECT *, COUNT(1) OVER(PARTITION BY ID ORDER BY time_stamp) = 1 first_entry
FROM `project.dataset.table`
)
WHERE first_entry
GROUP BY month
-- ORDER BY month
以上返回每月用户,不包括前几个月的用户
Row month count
1 2019-06-01 3
2 2019-07-01 1
3 2019-08-01 1
4 2019-09-01 1
答案 1 :(得分:0)
您可以使用两种聚合级别:
select yyyymm, count(*)
from (select id, date_trunc(min(time_stamp), month) as yyyymm
from tbl1
group by id
) t
group by yyyymm
order by yyyymm;