Python遍历电子表格的每一行

时间:2019-10-23 16:52:08

标签: python pandas

我有一个如下数据框:

enter image description here

我编写了一个函数,该函数将分解每个时间戳并计算停机时间和启动时间之间的分钟数。我还没有让每一行都对此进行迭代。

data1 = str(list(data['Adjusted_Down']))
data2 = str(list(data['Adjusted_Up']))
breakdown(data1, data2)

参考代码:

import pandas as pd

data = pd.read_excel('E:\Savers\Python\Python3 - Master\lab.xlsx')

def breakdown(x, y):
    string1 = x.split()
    variable1 = string1[0]
    dateVariable = variable1.split('-')
    variable2 = string1[1]
    dateVariable2 = variable2.split(':')
    hour = int(dateVariable2[0])
    minute = int(dateVariable2[1])
    seconds = int(dateVariable2[2])

    string1B = y.split()
    variable1B = string1B[0]
    dateVariableB = variable1B.split('-')
    variable2B = string1B[1]
    dateVariable2B = variable2B.split(':')
    hourB = int(dateVariable2B[0])
    minuteB = int(dateVariable2B[1])
    secondsB = int(dateVariable2B[2])

    if hourB > hour:
        sumMinutes = (hourB - hour)*60
        sumMinutes = sumMinutes + (minuteB - minute)
        print(sumMinutes)
    elif hourB == hour:
        sumMinutes = (minuteB - minute)
        print(sumMinutes)

3 个答案:

答案 0 :(得分:1)

我的假设是,您想为数据df中的每一行运行细分()函数

for index, row in data.iterrows():
    data1 = str(row['Adjusted_Down'])
    data2 = str(row['Adjusted_Up'])
    breakdown(data1, data2)

答案 1 :(得分:1)

您的问题不是很清楚,但是如果您想知道如何获取时间增量,那么我建议您在阅读电子表格时使用parse_dates参数。

data = pd.read_excel('E:\Savers\Python\Python3 - Master\lab.xlsx', parse_dates=['Adjusted_Down', 'Adjusted_Up'])

此时,您可以简单地减去2列,然后转换为所需的单位。

答案 2 :(得分:1)

首先按照上述@samuel的方式将列作为日期时间加载,这样加载文件的速度要快得多。

data = pd.read_excel('E:\Savers\Python\Python3 - Master\lab.xlsx', parse_dates=['Adjusted_Down', 'Adjusted_Up'])
#Then you can calculate the timedelta as easy as
data['timedelta-minutes'] = data.Adjusted_Up - data.Adjusted_Down

#convert to minutes
data['timedelta-minutes']  = data['timedelta-minutes'].dt.minute