在我从github获得的工作图像分类中,我必须在终端中输入以下命令 “ python class.py-sample.jpg”, 我试图使用摄像头进行实时图像分类,但会引发此错误 TypeError:预期的二进制或Unicode字符串,得到了(真,数组([[[45,43,41],........)
import tensorflow as tf
import cv2
import os
# Disable tensorflow compilation warnings
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import tensorflow as tf
video_capture = cv2.VideoCapture(0)
#image_path = "frame12.JPEG"
while True:
ret,frame = video_capture.read()
# Read the image_data
image_path = frame
image_data = tf.gfile.FastGFile(image_path, 'rb').read()
# Loads label file, strips off carriage return
label_lines = [line.rstrip() for line
in tf.gfile.GFile("logs/trained_labels.txt")]
# Unpersists graph from file
with tf.gfile.FastGFile("logs/trained_graph.pb", 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name='')
with tf.Session() as sess:
# Feed the image_data as input to the graph and get first prediction
softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')
predictions = sess.run(softmax_tensor, \
{'DecodeJpeg/contents:0': image_data})
# Sort to show labels of first prediction in order of confidence
top_k = predictions[0].argsort()[-len(predictions[0]):][::-1]
for node_id in top_k:
human_string = label_lines[node_id]
score = predictions[0][node_id]
print('%s (score = %.5f)' % (human_string, score))
cv2.imshow('Video', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
video_capture.release()
cv2.destroyAllWindows()