为图片表示歉意,但是由于获得了这些数据,我不确定如何重现此内容...
我只是想将其转换为一个简单的数据框,其中有索引列time
,lon
,lat
以及各个行中的值,如下所示:
| time | lat | lon | data |
我尝试做.reset_index(),但是time
轴仍然跨过而不是向下。如何“分解”所有索引值以获得一个包含所有索引列的简单数据框?
编辑:
用于再现的测试数据字典:
{Timestamp('2001-01-01 00:00:00'): {(50.18000030517578,
-5.6199951171875): -1.68,
(50.18000030517578, -4.9200439453125): -1.88,
(50.18000030517578, -4.219970703125): -2.08},
Timestamp('2001-01-02 00:00:00'): {(50.18000030517578,
-5.6199951171875): -1.95,
(50.18000030517578, -4.9200439453125): -2.25,
(50.18000030517578, -4.219970703125): -2.55},
Timestamp('2001-01-03 00:00:00'): {(50.18000030517578,
-5.6199951171875): -0.76,
(50.18000030517578, -4.9200439453125): -0.91,
(50.18000030517578, -4.219970703125): -1.06},
Timestamp('2001-01-04 00:00:00'): {(50.18000030517578,
-5.6199951171875): -2.9,
(50.18000030517578, -4.9200439453125): -3.01,
(50.18000030517578, -4.219970703125): -3.11},
Timestamp('2001-01-05 00:00:00'): {(50.18000030517578,
-5.6199951171875): -2.06,
(50.18000030517578, -4.9200439453125): -2.29,
(50.18000030517578, -4.219970703125): -2.52}}
答案 0 :(得分:3)
检查:
import pandas as pd
from pandas import Timestamp
d = {Timestamp('2001-01-01 00:00:00'): {(50.18000030517578,
-5.6199951171875): -1.68,
(50.18000030517578, -4.9200439453125): -1.88,
(50.18000030517578, -4.219970703125): -2.08},
Timestamp('2001-01-02 00:00:00'): {(50.18000030517578,
-5.6199951171875): -1.95,
(50.18000030517578, -4.9200439453125): -2.25,
(50.18000030517578, -4.219970703125): -2.55},
Timestamp('2001-01-03 00:00:00'): {(50.18000030517578,
-5.6199951171875): -0.76,
(50.18000030517578, -4.9200439453125): -0.91,
(50.18000030517578, -4.219970703125): -1.06},
Timestamp('2001-01-04 00:00:00'): {(50.18000030517578,
-5.6199951171875): -2.9,
(50.18000030517578, -4.9200439453125): -3.01,
(50.18000030517578, -4.219970703125): -3.11},
Timestamp('2001-01-05 00:00:00'): {(50.18000030517578,
-5.6199951171875): -2.06,
(50.18000030517578, -4.9200439453125): -2.29,
(50.18000030517578, -4.219970703125): -2.52}}
df = pd.DataFrame(d)
df = df.stack().to_frame().reset_index()
df.columns = ['lat', 'lon', 'time', 'data']
输出:
lat lon time data
0 50.18 -5.619995 2001-01-01 -1.68
1 50.18 -5.619995 2001-01-02 -1.95
2 50.18 -5.619995 2001-01-03 -0.76
3 50.18 -5.619995 2001-01-04 -2.90
4 50.18 -5.619995 2001-01-05 -2.06
5 50.18 -4.920044 2001-01-01 -1.88
6 50.18 -4.920044 2001-01-02 -2.25
7 50.18 -4.920044 2001-01-03 -0.91
8 50.18 -4.920044 2001-01-04 -3.01
9 50.18 -4.920044 2001-01-05 -2.29
10 50.18 -4.219971 2001-01-01 -2.08
11 50.18 -4.219971 2001-01-02 -2.55
12 50.18 -4.219971 2001-01-03 -1.06
13 50.18 -4.219971 2001-01-04 -3.11
14 50.18 -4.219971 2001-01-05 -2.52