我正在尝试使用scikit_learn和pandas解决python中的决策树问题。数据集在CSV文件中可用。 当我尝试在python中加载数据时,出现错误消息“ ValueError:无法将字符串转换为float:'CustomerID'”。我不知道我在代码中做错了什么。
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn import metrics
col_names=['CustomerID','Gender','Car Type', 'Shirt Size','Class']
pima=pd.read_csv("F:\Current semster courses\Machine
Learning\ML_A1_Fall2019\Q2_dataset.csv",header=None, names=col_names)
pima.head()
feature_cols=['CustomerID','Gender','Car Type', 'Shirt Size']
X=pima[feature_cols]
y=pima.Class
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)
clf = DecisionTreeClassifier()
# Train Decision Tree Classifer
clf = clf.fit(X_train,y_train)
#Predict the response for test dataset
y_pred = clf.predict(X_test)
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
有人可以告诉我我在做什么错吗?
数据集:
CustomerID Gender Car Type Shirt Size Class
1 M Family Small C0
2 M Sports Medium C0
3 M Sports Medium C0
4 M Sports Large C0
5 M Sports Extra Large C0
6 M Sports Extra Large C0
7 F Sports Small C0
8 F Sports Small C0
9 F Sports Medium C0
10 F Luxury Large C0
11 M Family Large C1
12 M Family Extra Large C1
13 M Family Medium C1
14 M Luxury Extra Large C1
15 F Luxury Small C1
16 F Luxury Small C1
17 F Luxury Medium C1
18 F Luxury Medium C1
19 F Luxury Medium C1
20 F Luxury Large C1
答案 0 :(得分:1)
啊。好。问题是您的数据是分类数据,scikit
无法直接使用。首先需要将其转换为数字数据。方法._get_dummies()
通过采用具有多个分类值的单列并将其转换为多列(每列包含数字1或0指示哪个类别为“ True”)来实现。
此外,您应该从功能部件中删除“客户ID”列。它是一个随机值,与该行属于一个类别还是另一个类别无关。
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn import metrics
col_names=['CustomerID','Gender','Car Type', 'Shirt Size','Class']
data = [['1', 'M', 'Family', 'Small', 'C0'],
['2', 'M', 'Sports', 'Medium', 'C0'],
['3', 'M', 'Sports', 'Medium', 'C0'],
['4', 'M', 'Sports', 'Large', 'C0'],
['5', 'M', 'Sports', 'Extra Large','C0'],
['6', 'M', 'Sports', 'Extra Large','C0'],
['7', 'F', 'Sports', 'Small', 'C0'],
['8', 'F', 'Sports', 'Small', 'C0'],
['9', 'F', 'Sports', 'Medium', 'C0'],
['10', 'F', 'Luxury', 'Large', 'C0'],
['11', 'M', 'Family', 'Large', 'C1'],
['12', 'M', 'Family', 'Extra Large','C1'],
['13', 'M', 'Family', 'Medium', 'C1'],
['14', 'M', 'Luxury', 'Extra Large','C1'],
['15', 'F', 'Luxury', 'Small', 'C1']]
#pima=pd.read_csv("F:\Current semster courses\Machine ...
pima=pd.DataFrame(data, columns = col_names)
# Convert the categorical data to multiple columns of numerical data for the decision tree
pima = pd.get_dummies(pima, prefix=['CustomerID','Gender','Car Type', 'Shirt Size','Class'])
print(pima)
#feature_cols=['CustomerID','Gender','Car Type','Shirt Size']
feature_cols=['Gender_F', 'Gender_M',
'Car Type_Family', 'Car Type_Luxury', 'Car Type_Sports',
'Shirt Size_Extra Large', 'Shirt Size_Large', 'Shirt Size_Medium',
'Shirt Size_Small', 'Class_C0', 'Class_C1']
X=pima[feature_cols]
y=pima[['Class_C0', 'Class_C1']]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)
print("X_train =", X_train)
print("X_test =", X_test)
print("y_train =", y_train)
print("y_test =", y_test )
clf = DecisionTreeClassifier()
# Train Decision Tree Classifer
clf = clf.fit(X_train,y_train)
#Predict the response for test dataset
y_pred = clf.predict(X_test)
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))