我想做什么:
In [2]: b = pd.DataFrame({"a": [np.nan, 1, np.nan, 2, np.nan]})
Out[2]:
a
0 nan
1 1.000
2 nan
3 2.000
4 nan
预期输出:
a
0 nan
1 1.000
2 0
3 2.000
4 nan
正如您在此处看到的那样,只有被有效值包围的nan才被替换为0。
我该怎么做?
df.interpolate(limit_area='inside')
对我来说不错,但是它没有参数来填充0 ... 答案 0 :(得分:3)
interpolate
,isna
,notna
和loc
您可以使用interpolate
,然后检查哪些位置在原始数据中具有NaN
,哪些位置已插入插值,然后将这些值替换为0
:
s = df['a'].interpolate(limit_area='inside')
m1 = b['a'].isna()
m2 = s.notna()
df.loc[m1&m2, 'a'] = 0
a
0 NaN
1 1.0
2 0.0
3 2.0
4 NaN
shift
和loc
:一种更简单的方法是检查上一行和下一行是否为not NaN
,并用0
填充这些位置:
m1 = df['a'].shift().notna()
m2 = df['a'].shift(-1).notna()
m3 = df['a'].isna()
df.loc[m1&m2&m3, 'a'] = 0
a
0 NaN
1 1.0
2 0.0
3 2.0
4 NaN
答案 1 :(得分:0)
b = pd.DataFrame({"a": [np.nan, 1, np.nan, 2, np.nan,3,np.nan]})
a = b[b['a'].isna()]
print('After :',b['a'])
#######Solution One######
for x in a.iterrows() :
pre = x[0] - 1
post = x[0] +1
if pre < 0 or post >= len(b['a']) :
pass
else :
if not(np.isnan(b.iloc[pre,0])) and not(np.isnan(b.iloc[post,0])) :
b.iloc[x[0],0] = 0
print('Before :',b['a'])
######Solution Two#######
def series_extract(index, series):
return map(np.isnan, series[[index-1, index, index+1]])
def fill_in_between_na(df, column):
series = df[column]
index = []
for i in range(1,len(series)-1) :
mask = np.array([False,True,False]) == np.array(series_extract(i, series))
if all(mask):
index.append(i)
df[column][index] = 0
return df
fill_in_between_na(b, 'a')
print('Before :',b['a'])