我有两个表,p_to_v映射,g_to_v映射。
scala> val p_to_v = Seq(("p1", "v1"), ("p1", "v2"), ("p2", "v1")).toDF("p", "v")
scala> p_to_v.show
+---+---+
| p| v|
+---+---+
| p1| v1|
| p1| v2|
| p2| v1|
+---+---+
“ p1”映射到[v1,v2]
“ p2”映射到[v1]
scala> val g_to_v = Seq(("g1", "v1"), ("g2", "v1"), ("g2", "v2"), ("g3", "v2")).toDF("g", "v")
scala> g_to_v.show
+---+---+
| g| v|
+---+---+
| g1| v1|
| g2| v1|
| g2| v2|
| g3| v2|
+---+---+
“ g1”映射到[v1]
“ g2”映射到[v1,v2]
“ g3”映射到[v2]
我想获得所有 p 和 g 组合,其中p的对应 v 映射是 v g
的映射p1 [v1, v2] - g2 [v1, v2]
p2 [v1] - g1 [v1]
p2 [v1] - g2 [v1, v2]
我怎么能得到?
答案 0 :(得分:1)
这非常简单。您需要使用groupBy和简单的内部联接
scala> val p_to_v = Seq(("p1", "v1"), ("p1", "v2"), ("p2", "v1")).toDF("p", "v")
19/10/16 22:11:55 WARN metastore: Failed to connect to the MetaStore Server...
p_to_v: org.apache.spark.sql.DataFrame = [p: string, v: string]
scala> val g_to_v = Seq(("g1", "v1"), ("g2", "v1"), ("g2", "v2"), ("g3", "v2")).toDF("g", "v")
g_to_v: org.apache.spark.sql.DataFrame = [g: string, v: string]
现在通过分组进行分组
scala> val pv = p_to_v.groupBy($"p").agg(collect_list("v").as("pv"))
pv: org.apache.spark.sql.DataFrame = pv = [p: string, pv: array<string>]
scala> val gv = g_to_v.groupBy($"g").agg(collect_list("v").as("gv"))
gv: org.apache.spark.sql.DataFrame = [g: string, gv: array<string>]
scala> pv.show
+---+--------+
| p| pv|
+---+--------+
| p2| [v1]|
| p1|[v1, v2]|
+---+--------+
scala> gv.show
+---+--------+
| g| gv|
+---+--------+
| g2|[v2, v1]|
| g3| [v2]|
| g1| [v1]|
+---+--------+
创建用于查找子集的UDF
import org.apache.spark.sql.Row
import org.apache.spark.sql.functions._
def subLis(ar1: Seq[Row], ar2: Seq[Row]) = ar1.toSet.subsetOf(ar2.toSet)
subLis: (ar1: Seq[org.apache.spark.sql.Row], ar2: Seq[org.apache.spark.sql.Row])Boolean
val subLisUDF = udf(subLis _)
UserDefinedFunction(<function2>,BooleanType,None)
现在您可以执行交叉连接并应用UDF
spark.conf.set("spark.sql.crossJoin.enabled", "true")
pv.join(gv).withColumn("newdsa", subLisUDF($"pv", $"gv")).filter($"newdsa").show
+---+--------+---+--------+------+
| p| pv| g| gv|newdsa|
+---+--------+---+--------+------+
| p2| [v1]| g2|[v2, v1]| true|
| p1|[v1, v2]| g2|[v2, v1]| true|
| p2| [v1]| g1| [v1]| true|
+---+--------+---+--------+------+
或有条件加入
pv.join(gv, pv("pv") === gv("gv") || subLisUDF($"pv", $"gv")).show
+---+--------+---+--------+
| p| pv| g| gv|
+---+--------+---+--------+
| p2| [v1]| g2|[v1, v2]|
| p1|[v1, v2]| g2|[v1, v2]|
| p2| [v1]| g1| [v1]|
+---+--------+---+--------+
尝试两种方法,并选择性能最好的一种。