我希望能够在数据框上使用df.fillna()
函数,但要根据该特定单元格的“索引和列”名称对其应用一个条件。
我正在尝试根据以下数据集(以下大型词典的歉意)创建曲棍球队友数据的热图-
linemates_toi = {
'Player 1': {'Player 2': 0.25, 'Player 3': 7.95, 'Player 4': 0.6333, 'Player 5': 9.95, 'Player 6': 0.6333, 'Player 7': 0.8, 'Player 8': 4.2667, 'Player 9': 7.8833, 'Player 10': 0.3, 'Player 11': 11.2333, 'Player 12': 3.35, 'Player 13': 0.2167},
'Player 10': {'Player 14': 2.3, 'Player 18': 1.2667, 'Player 2': 6.8333, 'Player 4': 5.5833, 'Player 5': 0.9, 'Player 16': 6.9167, 'Player 6': 4.9667, 'Player 7': 4.15, 'Player 15': 1.0, 'Player 8': 0.3167, 'Player 17': 5.3167, 'Player 1': 0.3, 'Player 11': 1.6167, 'Player 12': 0.6833, 'Player 13': 12.7167},
'Player 12': {'Player 14': 4.5333, 'Player 18': 4.3333, 'Player 2': 3.1167, 'Player 3': 1.2333, 'Player 4': 5.7333, 'Player 5': 3.5167, 'Player 16': 3.0, 'Player 6': 3.0167, 'Player 7': 2.4, 'Player 15': 2.0167, 'Player 8': 11.6667, 'Player 17': 2.2667, 'Player 9': 0.1167, 'Player 1': 3.35, 'Player 10': 0.6833, 'Player 11': 3.35},
'Player 17': {'Player 14': 4.55, 'Player 18': 1.65, 'Player 2': 0.8833, 'Player 3': 2.85, 'Player 5': 0.0333, 'Player 16': 2.9167, 'Player 6': 7.8167, 'Player 7': 6.0833, 'Player 8': 3.8, 'Player 9': 2.25, 'Player 10': 5.3167, 'Player 12': 2.2667, 'Player 13': 5.7833},
'Player 7': {'Player 18': 0.3667, 'Player 2': 0.6667, 'Player 3': 1.55, 'Player 4': 0.3333, 'Player 5': 0.15, 'Player 16': 1.2167, 'Player 6': 6.8333, 'Player 15': 0.3333, 'Player 8': 3.0667, 'Player 17': 6.0833, 'Player 9': 1.8833, 'Player 1': 0.8, 'Player 10': 4.15, 'Player 11': 1.0, 'Player 12': 2.4, 'Player 13': 4.4333},
'Player 16': {'Player 14': 2.2833, 'Player 2': 8.5333, 'Player 3': 2.7, 'Player 4': 8.0167, 'Player 5': 0.45, 'Player 6': 0.4, 'Player 7': 1.2167, 'Player 8': 2.3, 'Player 17': 2.9167, 'Player 9': 2.15, 'Player 10': 6.9167, 'Player 11': 0.1333, 'Player 12': 3.0, 'Player 13': 6.5833},
'Player 18': {'Player 14': 10.05, 'Player 2': 0.75, 'Player 3': 5.0, 'Player 4': 3.45, 'Player 5': 0.3333, 'Player 6': 0.8333, 'Player 7': 0.3667, 'Player 15': 5.2, 'Player 8': 5.8167, 'Player 17': 1.65, 'Player 9': 4.3833, 'Player 10': 1.2667, 'Player 11': 1.5, 'Player 12': 4.3333, 'Player 13': 1.5333},
'Player 13': {'Player 14': 3.0333, 'Player 18': 1.5333, 'Player 2': 5.9167, 'Player 3': 0.7333, 'Player 4': 4.95, 'Player 5': 0.8167, 'Player 16': 6.5833, 'Player 6': 5.1333, 'Player 7': 4.4333, 'Player 15': 1.2667, 'Player 8': 0.2833, 'Player 17': 5.7833, 'Player 1': 0.2167, 'Player 10': 12.7167, 'Player 11': 1.5333},
'Player 5': {'Player 18': 0.3333, 'Player 2': 0.8333, 'Player 3': 8.0333, 'Player 16': 0.45, 'Player 6': 0.3333, 'Player 7': 0.15, 'Player 8': 3.0167, 'Player 17': 0.0333, 'Player 9': 6.7333, 'Player 1': 9.95, 'Player 10': 0.9, 'Player 11': 11.2333, 'Player 12': 3.5167, 'Player 13': 0.8167},
'Player 15': {'Player 14': 4.5667, 'Player 18': 5.2, 'Player 2': 0.4667, 'Player 3': 2.35, 'Player 6': 0.1667, 'Player 7': 0.3333, 'Player 8': 2.0167, 'Player 9': 2.0833, 'Player 10': 1.0, 'Player 12': 2.0167, 'Player 13': 1.2667},
'Player 2': {'Player 18': 0.75, 'Player 3': 2.65, 'Player 4': 8.6, 'Player 5': 0.8333, 'Player 16': 8.5333, 'Player 6': 0.8333, 'Player 7': 0.6667, 'Player 15': 0.4667, 'Player 8': 2.3333, 'Player 17': 0.8833, 'Player 9': 1.9167, 'Player 1': 0.25, 'Player 10': 6.8333, 'Player 11': 1.6167, 'Player 12': 3.1167, 'Player 13': 5.9167},
'Player 8': {'Player 14': 5.8333, 'Player 18': 5.8167, 'Player 2': 2.3333, 'Player 3': 1.1167, 'Player 4': 5.6833, 'Player 5': 3.0167, 'Player 16': 2.3, 'Player 6': 4.2667, 'Player 7': 3.0667, 'Player 15': 2.0167, 'Player 17': 3.8, 'Player 9': 1.1333, 'Player 1': 4.2667, 'Player 10': 0.3167, 'Player 11': 3.8167, 'Player 12': 11.6667, 'Player 13': 0.2833},
'Player 4': {'Player 14': 3.2833, 'Player 18': 3.45, 'Player 2': 8.6, 'Player 3': 2.0667, 'Player 16': 8.0167, 'Player 6': 0.8333, 'Player 7': 0.3333, 'Player 8': 5.6833, 'Player 9': 1.85, 'Player 1': 0.6333, 'Player 10': 5.5833, 'Player 11': 0.85, 'Player 12': 5.7333, 'Player 13': 4.95},
'Player 9': {'Player 14': 4.5167, 'Player 18': 4.3833, 'Player 2': 1.9167, 'Player 3': 14.35, 'Player 4': 1.85, 'Player 5': 6.7333, 'Player 16': 2.15, 'Player 6': 0.8833, 'Player 7': 1.8833, 'Player 15': 2.0833, 'Player 8': 1.1333, 'Player 17': 2.25, 'Player 1': 7.8833, 'Player 11': 9.0667, 'Player 12': 0.1167},
'Player 14': {'Player 18': 10.05, 'Player 3': 5.7167, 'Player 4': 3.2833, 'Player 16': 2.2833, 'Player 6': 1.8833, 'Player 15': 4.5667, 'Player 8': 5.8333, 'Player 17': 4.55, 'Player 9': 4.5167, 'Player 10': 2.3, 'Player 11': 0.9833, 'Player 12': 4.5333, 'Player 13': 3.0333},
'Player 11': {'Player 14': 0.9833, 'Player 18': 1.5, 'Player 2': 1.6167, 'Player 3': 9.7667, 'Player 4': 0.85, 'Player 5': 11.2333, 'Player 16': 0.1333, 'Player 6': 0.5, 'Player 7': 1.0, 'Player 8': 3.8167, 'Player 9': 9.0667, 'Player 1': 11.2333, 'Player 10': 1.6167, 'Player 12': 3.35, 'Player 13': 1.5333},
'Player 6': {'Player 14': 1.8833, 'Player 18': 0.8333, 'Player 2': 0.8333, 'Player 3': 1.1333, 'Player 4': 0.8333, 'Player 5': 0.3333, 'Player 16': 0.4, 'Player 7': 6.8333, 'Player 15': 0.1667, 'Player 8': 4.2667, 'Player 17': 7.8167, 'Player 9': 0.8833, 'Player 1': 0.6333, 'Player 10': 4.9667, 'Player 11': 0.5, 'Player 12': 3.0167, 'Player 13': 5.1333},
'Player 3': {'Player 14': 5.7167, 'Player 18': 5.0, 'Player 2': 2.65, 'Player 4': 2.0667, 'Player 5': 8.0333, 'Player 16': 2.7, 'Player 6': 1.1333, 'Player 7': 1.55, 'Player 15': 2.35, 'Player 8': 1.1167, 'Player 17': 2.85, 'Player 9': 14.35, 'Player 1': 7.95, 'Player 11': 9.7667, 'Player 12': 1.2333, 'Player 13': 0.7333}
}
df = pd.DataFrame(linemates_toi)
我现在想要实现的是使用df.fillna(0)
并应用一个条件,因此唯一被替换的NaN
是当索引和列名称不匹配时,因为我希望这些单元格能够保留NaN
,这样当我将它们绘制到热图中时,它们在Matplotlib所应用的cmap
中就没有任何颜色。
如果我正在编写伪代码,它将看起来像这样-
df.fillna(0, df.cell.Index.Name != df.cell.Column.Name)
谢谢!
答案 0 :(得分:3)
使用一些广播和NaN
-掩码
mask = df.index.to_numpy() == df.columns.to_numpy()[:, None]
df.fillna(0).mask(mask)
>>> df.head()
Player 1 Player 10 Player 12 Player 17 Player 7 Player 16 \
Player 1 NaN 0.3000 3.3500 0.0000 0.8000 0.0000
Player 10 0.3000 NaN 0.6833 5.3167 4.1500 6.9167
Player 11 11.2333 1.6167 3.3500 0.0000 1.0000 0.1333
Player 12 3.3500 0.6833 NaN 2.2667 2.4000 3.0000
Player 13 0.2167 12.7167 0.0000 5.7833 4.4333 6.5833
Player 18 Player 13 Player 5 Player 15 Player 2 Player 8 \
Player 1 0.0000 0.2167 9.9500 0.0000 0.2500 4.2667
Player 10 1.2667 12.7167 0.9000 1.0000 6.8333 0.3167
Player 11 1.5000 1.5333 11.2333 0.0000 1.6167 3.8167
Player 12 4.3333 0.0000 3.5167 2.0167 3.1167 11.6667
Player 13 1.5333 NaN 0.8167 1.2667 5.9167 0.2833
Player 4 Player 9 Player 14 Player 11 Player 6 Player 3
Player 1 0.6333 7.8833 0.0000 11.2333 0.6333 7.9500
Player 10 5.5833 0.0000 2.3000 1.6167 4.9667 0.0000
Player 11 0.8500 9.0667 0.9833 NaN 0.5000 9.7667
Player 12 5.7333 0.1167 4.5333 3.3500 3.0167 1.2333
Player 13 4.9500 0.0000 3.0333 1.5333 5.1333 0.7333
答案 1 :(得分:2)
您也可以执行以下操作:
df.fillna(0, inplace=True)
for col in df:
df.loc[col, col] = np.nan
说明:
答案 2 :(得分:2)
使用df.apply
在每个列上映射一个lambda:
df = df.apply(lambda col: col.where((col.name == col.index) | col.notnull(), 0))
如果col
为true,则 col.where(condition, value_if_false)
返回condition
中的原始值。否则返回value_if_false