我有一个如下所示的数据框
df = pd.DataFrame({
'subject_id':[1,1,1,1,2,2,2,2,3,3,4,4,4,4,4],
'readings' : ['READ_1','READ_2','READ_1','READ_3','READ_1','READ_5','READ_6','READ_8','READ_10','READ_12','READ_11','READ_14','READ_09','READ_08','READ_07'],
'val' :[5,6,7,11,5,7,16,12,13,56,32,13,45,43,46],
})
我想做的是获取现有列的描述性统计信息/摘要形式,而不是拥有原始列。我希望将(min
,max
,25%
,75%
,std
,var
视为每个主题的新列
我尝试了以下操作,但输出不准确
df.groupby(['subject_id','readings']).describe().reset_index() #this gives some output but it isn't exact
df.groupby(['subject_id','readings']).pivot_table(values='val', index='subject_id', columns='readings').describe() # this throws error
我希望我的输出如下所示。基本上它将是一个宽而稀疏的矩阵。由于屏幕截图很宽,因此无法进一步放大。如果单击该图像,将会更好地显示预期的输出
答案 0 :(得分:1)
使用Series.unstack
在describe
之后重塑,然后DataFrame.swaplevel
并按照原始添加DataFrame.reindex
的顺序进行排序:
df = (df.groupby(['subject_id','readings'])['val']
.describe()
.unstack()
.swaplevel(0,1,axis=1)
.reindex(df['readings'].unique(), axis=1, level=0))
df.columns = df.columns.map('_'.join)
df = df.reset_index()
print (df)
subject_id READ_1_count READ_1_mean READ_1_std READ_1_min READ_1_25% \
0 1 2.0 6.0 1.414214 5.0 5.5
1 2 1.0 5.0 NaN 5.0 5.0
2 3 NaN NaN NaN NaN NaN
3 4 NaN NaN NaN NaN NaN
READ_1_50% READ_1_75% READ_1_max READ_2_count ... READ_08_75% \
0 6.0 6.5 7.0 1.0 ... NaN
1 5.0 5.0 5.0 NaN ... NaN
2 NaN NaN NaN NaN ... NaN
3 NaN NaN NaN NaN ... 43.0
READ_08_max READ_07_count READ_07_mean READ_07_std READ_07_min \
0 NaN NaN NaN NaN NaN
1 NaN NaN NaN NaN NaN
2 NaN NaN NaN NaN NaN
3 43.0 1.0 46.0 NaN 46.0
READ_07_25% READ_07_50% READ_07_75% READ_07_max
0 NaN NaN NaN NaN
1 NaN NaN NaN NaN
2 NaN NaN NaN NaN
3 46.0 46.0 46.0 46.0
[4 rows x 105 columns]