以下expand year values to month in pandas
我有:
pd.DataFrame({'comp':['a','b'], 'period':['20180331','20171231'],'value':[12,24]})
comp period value
0 a 20180331 12
1 b 20171231 24
,并想推断到201701至201812(含)。该值应在该期间之前的12个月内分配。
comp yyymm value
a 201701 na
a 201702 na
...
a 201705 12
a 201706 12
...
a 201803 12
a 201804 na
b 201701 24
...
b 201712 24
b 201801 na
...
答案 0 :(得分:0)
使用:
#create month periods with min and max value
r = pd.period_range('2017-01', '2018-12', freq='m')
#convert column to period
df['period'] = pd.to_datetime(df['period']).dt.to_period('m')
#create MultiIndex for add all possible values
mux = pd.MultiIndex.from_product([df['comp'], r], names=('comp','period'))
#reindex for append values
df = df.set_index(['comp','period'])['value'].reindex(mux).reset_index()
#back filling by 11 values of missing values per groups
df['new'] = df.groupby('comp')['value'].bfill(limit=11)
print (df)
comp period value new
0 a 2017-01 NaN NaN
1 a 2017-02 NaN NaN
2 a 2017-03 NaN NaN
3 a 2017-04 NaN 12.0
4 a 2017-05 NaN 12.0
...
...
10 a 2017-11 NaN 12.0
11 a 2017-12 NaN 12.0
12 a 2018-01 NaN 12.0
13 a 2018-02 NaN 12.0
14 a 2018-03 12.0 12.0
15 a 2018-04 NaN NaN
16 a 2018-05 NaN NaN
17 a 2018-06 NaN NaN
18 a 2018-07 NaN NaN
19 a 2018-08 NaN NaN
20 a 2018-09 NaN NaN
21 a 2018-10 NaN NaN
22 a 2018-11 NaN NaN
23 a 2018-12 NaN NaN
24 b 2017-01 NaN 24.0
25 b 2017-02 NaN 24.0
26 b 2017-03 NaN 24.0
...
...
32 b 2017-09 NaN 24.0
33 b 2017-10 NaN 24.0
34 b 2017-11 NaN 24.0
35 b 2017-12 24.0 24.0
36 b 2018-01 NaN NaN
37 b 2018-02 NaN NaN
38 b 2018-03 NaN NaN
...
...
44 b 2018-09 NaN NaN
45 b 2018-10 NaN NaN
46 b 2018-11 NaN NaN
47 b 2018-12 NaN NaN
答案 1 :(得分:0)
看看是否可行:
dftime = pd.DataFrame(pd.date_range('20170101','20181231'), columns=['dt']).apply(lambda x: x.dt.strftime('%Y-%m'), axis=1) # Populating full range including dates
dftime = dftime.assign(dt=dftime.dt.drop_duplicates().reset_index(drop=True)).dropna() # Dropping duplicates from above range
df['dt'] = pd.to_datetime(df.period).apply(lambda x: x.strftime('%Y-%m')) # Adding column for merging purpose
target = df.groupby('comp').apply(lambda x: dftime.merge(x[['comp','dt','value']], on='dt', how='left').fillna({'comp':x.comp.unique()[0]})).reset_index(drop=True) # Populating data for each company
这将提供所需的输出:
print(target)
dt comp value
0 2017-01 a NaN
1 2017-02 a NaN
2 2017-03 a NaN
3 2017-04 a NaN
4 2017-05 a NaN
5 2017-06 a NaN
6 2017-07 a NaN
以此类推。