每个时间步都有一个浮点数据。每个记录数据都是1000个浮点数的数组。时间不是记录时间,而是阵列中每次记录数据之间的时间为0.1秒。
我想准备数据并将其存储在适当的容器中,然后将其传递给LSTM模型。
一次没有指定确切的0.1秒持续时间,然后再次考虑持续时间。
我所做的:
我从.mat文件中读取数据,并将每个1000个float数组附加到列表中:
max_Value = []
min_Value = []
scale = 2.6
X_Data=[]
Y_Data=[]
epochs_Num = 10
batch_Num = 64
name_Model = f'{LSTM_{int(time.time())}'
for i_Path in origin_Data_Path:
mat_Data = loadmat(i_Path)
data = mat_Data['data']
X_Data.append(data[:,0])
Y_Data.append(data[:,1])
...
opt = tf.keras.optimizers.Adam(lr=0.001,decay=1e-6)
ls = tf.keras.losses.sparse_categorical_crossentropy
tensorboard = TensorBoard(log_dir=f'logs/{name_Model}')
myModel.compile(loss=ls,optimizer=opt,metrics=['accuracy'])
history = myModel.fit(X_Data,
labels_Categorical,
batch_size=batch_Num,
epochs=epochs_Num,
validation_split=0.2,
callbacks= [tensorboard] )
myModel.save("myMod.h5")
错误:
File "C:\Python\Anaconda3\lib\site-packages\spyder_kernels\customize\spydercustomize.py", line 827, in runfile
execfile(filename, namespace)
File "C:\Python\Anaconda3\lib\site-packages\spyder_kernels\customize\spydercustomize.py", line 110, in execfile
exec(compile(f.read(), filename, 'exec'), namespace)
File "C:/Users/Light/Desktop/Gesture/Test01.py", line 139, in <module>
callbacks= [tensorboard] )
File "C:\Python\Anaconda3\lib\site-packages\tensorflow_core\python\keras\engine\training.py", line 728, in fit
use_multiprocessing=use_multiprocessing)
File "C:\Python\Anaconda3\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py", line 224, in fit
distribution_strategy=strategy)
File "C:\Python\Anaconda3\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py", line 516, in _process_training_inputs
steps=steps_per_epoch)
File "C:\Python\Anaconda3\lib\site-packages\tensorflow_core\python\keras\engine\training.py", line 2472, in _standardize_user_data
exception_prefix='input')
File "C:\Python\Anaconda3\lib\site-packages\tensorflow_core\python\keras\engine\training_utils.py", line 565, in standardize_input_data
'with shape ' + str(data_shape))
ValueError: Error when checking input: expected lstm_input to have 3 dimensions, but got array with shape (1000, 1)
答案 0 :(得分:0)
这是因为您需要为其输入能够进行批处理的输入。您已经给它(1000, 1)
了,它似乎对应于您的数据的单个样本。 Keras希望它的名称为(batch/samples, time, channels)
,对您来说,它就是(number of samples, 1000, 1)
。这是3个预期的维度。
检查如何构造输入数据。您不需要自己进行批量处理,fit()
会为您将输入数据拆分为这些大小的批量处理。
答案 1 :(得分:0)
我意识到容器应该采用N维数组的形式。解决了模型输入形状的问题。但是存在精度低的问题。