麻烦培训自定义对象检测器/ Windows / Anaconda

时间:2019-10-14 08:05:58

标签: tensorflow object-detection

我正在按照本教程来训练自定义对象检测器:https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/training.html

当我使用以下命令启动训练脚本时:

  

python train.py --logtostderr --train_dir = training / --pipeline_config_path = training / ssd_inception_v2_coco.config

我收到以下输出:

(tensorflow_gpuenv) C:\Content\workspace\training_demo>python train.py --logtostderr --train_dir=training/ --pipeline_config_path=training/ssd_inception_v2_coco.config
WARNING:tensorflow:
The TensorFlow contrib module will not be included in TensorFlow 2.0.
For more information, please see:
    * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md
    * https://github.com/tensorflow/addons
    * https://github.com/tensorflow/io (for I/O related ops)
If you depend on functionality not listed there, please file an issue.

WARNING:tensorflow:From C:\Content\TensorFlow\models\research\slim\nets\inception_resnet_v2.py:373: The name tf.GraphKeys is deprecated. Please use tf.compat.v1.GraphKeys instead.

WARNING:tensorflow:From C:\Content\TensorFlow\models\research\slim\nets\mobilenet\mobilenet.py:397: The name tf.nn.avg_pool is deprecated. Please use tf.nn.avg_pool2d instead.

WARNING:tensorflow:From train.py:55: The name tf.logging.set_verbosity is deprecated. Please use tf.compat.v1.logging.set_verbosity instead.

WARNING:tensorflow:From train.py:55: The name tf.logging.INFO is deprecated. Please use tf.compat.v1.logging.INFO instead.

WARNING:tensorflow:From train.py:184: The name tf.app.run is deprecated. Please use tf.compat.v1.app.run instead.

WARNING:tensorflow:From C:\Content\Anaconda3\envs\tensorflow_gpuenv\lib\site-packages\absl\app.py:250: main (from __main__) is deprecated and will be removed in a future version.
Instructions for updating:
Use object_detection/model_main.py.
W1014 09:39:33.230681 15784 deprecation.py:323] From C:\Content\Anaconda3\envs\tensorflow_gpuenv\lib\site-packages\absl\app.py:250: main (from __main__) is deprecated and will be removed in a future version.
Instructions for updating:
Use object_detection/model_main.py.
WARNING:tensorflow:From train.py:90: The name tf.gfile.MakeDirs is deprecated. Please use tf.io.gfile.makedirs instead.

W1014 09:39:33.231679 15784 deprecation_wrapper.py:119] From train.py:90: The name tf.gfile.MakeDirs is deprecated. Please use tf.io.gfile.makedirs instead.

WARNING:tensorflow:From C:\Content\TensorFlow\models\research\object_detection\utils\config_util.py:102: The name tf.gfile.GFile is deprecated. Please use tf.io.gfile.GFile instead.

W1014 09:39:33.231679 15784 deprecation_wrapper.py:119] From C:\Content\TensorFlow\models\research\object_detection\utils\config_util.py:102: The name tf.gfile.GFile is deprecated. Please use tf.io.gfile.GFile instead.

Traceback (most recent call last):
    File "train.py", line 184, in <module>
    tf.app.run()
    File "C:\Content\Anaconda3\envs\tensorflow_gpuenv\lib\site-packages\tensorflow\python\platform\app.py", line 40, in run
    _run(main=main, argv=argv, flags_parser=_parse_flags_tolerate_undef)
    File "C:\Content\Anaconda3\envs\tensorflow_gpuenv\lib\site-packages\absl\app.py", line 299, in run
    _run_main(main, args)
    File "C:\Content\Anaconda3\envs\tensorflow_gpuenv\lib\site-packages\absl\app.py", line 250, in _run_main
    sys.exit(main(argv))
    File "C:\Content\Anaconda3\envs\tensorflow_gpuenv\lib\site-packages\tensorflow\python\util\deprecation.py", line 324, in new_func
    return func(*args, **kwargs)
    File "train.py", line 93, in main
    FLAGS.pipeline_config_path)
    File "C:\Content\TensorFlow\models\research\object_detection\utils\config_util.py", line 104, in get_configs_from_pipeline_file
    text_format.Merge(proto_str, pipeline_config)
    File "C:\Content\Anaconda3\envs\tensorflow_gpuenv\lib\site-packages\google\protobuf\text_format.py", line 690, in Merge
    allow_unknown_field=allow_unknown_field)
    File "C:\Content\Anaconda3\envs\tensorflow_gpuenv\lib\site-packages\google\protobuf\text_format.py", line 757, in MergeLines
    return parser.MergeLines(lines, message)
    File "C:\Content\Anaconda3\envs\tensorflow_gpuenv\lib\site-packages\google\protobuf\text_format.py", line 782, in MergeLines
    self._ParseOrMerge(lines, message)
    File "C:\Content\Anaconda3\envs\tensorflow_gpuenv\lib\site-packages\google\protobuf\text_format.py", line 804, in _ParseOrMerge
    self._MergeField(tokenizer, message)
    File "C:\Content\Anaconda3\envs\tensorflow_gpuenv\lib\site-packages\google\protobuf\text_format.py", line 872, in _MergeField
    name = tokenizer.ConsumeIdentifierOrNumber()
    File "C:\Content\Anaconda3\envs\tensorflow_gpuenv\lib\site-packages\google\protobuf\text_format.py", line 1340, in ConsumeIdentifierOrNumber
    raise self.ParseError('Expected identifier or number, got %s.' % result)
': Expected identifier or number, got .1:1 : '# SSD with Inception v2 configuration for MSCOCO Dataset.

我还测试了在tensorflow模型研究目录中运行脚本“ model_main.py”

SET PIPELINE_CONFIG_PATH=C:\Content\workspace\training_demo\annotations\ssd_inception_v2_coco.config
SET MODEL_DIR=C:\TEMP 
SET NUM_TRAIN_STEPS=50000
SET SAMPLE_1_OF_N_EVAL_EXAMPLES=1
python object_detection/model_main.py --pipeline_config_path=%PIPELINE_CONFIG_PATH% --model_dir=%MODEL_DIR% --num_train_steps=%NUM_TRAIN_STEPS% --sample_1_of_n_eval_examples=%SAMPLE_1_OF_N_EVAL_EXAMPLES% --alsologtostderr

并得到以下结果:

(tensorflow_gpuenv) C:\Content\TensorFlow\models\research>SET PIPELINE_CONFIG_PATH=C:\Content\workspace\training_demo\annotations\ssd_inception_v2_coco.config

(tensorflow_gpuenv) C:\Content\TensorFlow\models\research>SET MODEL_DIR=C:\TEMP

(tensorflow_gpuenv) C:\Content\TensorFlow\models\research>SET NUM_TRAIN_STEPS=50000

(tensorflow_gpuenv) C:\Content\TensorFlow\models\research>SET SAMPLE_1_OF_N_EVAL_EXAMPLES=1

(tensorflow_gpuenv) C:\Content\TensorFlow\models\research>python object_detection/model_main.py --pipeline_config_path=%PIPELINE_CONFIG_PATH% --model_dir=%MODEL_DIR% --num_train_steps=%NUM_TRAIN_STEPS% --sample_1_of_n_eval_examples=%SAMPLE_1_OF_N_EVAL_EXAMPLES% --alsologtostderr
WARNING:tensorflow:
The TensorFlow contrib module will not be included in TensorFlow 2.0.
For more information, please see:
    * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md
    * https://github.com/tensorflow/addons
    * https://github.com/tensorflow/io (for I/O related ops)
If you depend on functionality not listed there, please file an issue.

WARNING:tensorflow:From C:\Content\TensorFlow\models\research\slim\nets\inception_resnet_v2.py:373: The name tf.GraphKeys is deprecated. Please use tf.compat.v1.GraphKeys instead.

WARNING:tensorflow:From C:\Content\TensorFlow\models\research\slim\nets\mobilenet\mobilenet.py:397: The name tf.nn.avg_pool is deprecated. Please use tf.nn.avg_pool2d instead.

WARNING:tensorflow:From object_detection/model_main.py:109: The name tf.app.run is deprecated. Please use tf.compat.v1.app.run instead.

WARNING:tensorflow:From C:\Content\TensorFlow\models\research\object_detection\utils\config_util.py:102: The name tf.gfile.GFile is deprecated. Please use tf.io.gfile.GFile instead.

W1014 09:43:24.385520  6260 deprecation_wrapper.py:119] From C:\Content\TensorFlow\models\research\object_detection\utils\config_util.py:102: The name tf.gfile.GFile is deprecated. Please use tf.io.gfile.GFile instead.

Traceback (most recent call last):
    File "object_detection/model_main.py", line 109, in <module>
    tf.app.run()
    File "C:\Content\Anaconda3\envs\tensorflow_gpuenv\lib\site-packages\tensorflow\python\platform\app.py", line 40, in run
    _run(main=main, argv=argv, flags_parser=_parse_flags_tolerate_undef)
    File "C:\Content\Anaconda3\envs\tensorflow_gpuenv\lib\site-packages\absl\app.py", line 299, in run
    _run_main(main, args)
    File "C:\Content\Anaconda3\envs\tensorflow_gpuenv\lib\site-packages\absl\app.py", line 250, in _run_main
    sys.exit(main(argv))
    File "object_detection/model_main.py", line 71, in main
    FLAGS.sample_1_of_n_eval_on_train_examples))
    File "C:\Content\TensorFlow\models\research\object_detection\model_lib.py", line 605, in create_estimator_and_inputs
    pipeline_config_path, config_override=config_override)
    File "C:\Content\TensorFlow\models\research\object_detection\utils\config_util.py", line 104, in get_configs_from_pipeline_file
    text_format.Merge(proto_str, pipeline_config)
    File "C:\Content\Anaconda3\envs\tensorflow_gpuenv\lib\site-packages\google\protobuf\text_format.py", line 690, in Merge
    allow_unknown_field=allow_unknown_field)
    File "C:\Content\Anaconda3\envs\tensorflow_gpuenv\lib\site-packages\google\protobuf\text_format.py", line 757, in MergeLines
    return parser.MergeLines(lines, message)
    File "C:\Content\Anaconda3\envs\tensorflow_gpuenv\lib\site-packages\google\protobuf\text_format.py", line 782, in MergeLines
    self._ParseOrMerge(lines, message)
    File "C:\Content\Anaconda3\envs\tensorflow_gpuenv\lib\site-packages\google\protobuf\text_format.py", line 804, in _ParseOrMerge
    self._MergeField(tokenizer, message)
    File "C:\Content\Anaconda3\envs\tensorflow_gpuenv\lib\site-packages\google\protobuf\text_format.py", line 872, in _MergeField
    name = tokenizer.ConsumeIdentifierOrNumber()
    File "C:\Content\Anaconda3\envs\tensorflow_gpuenv\lib\site-packages\google\protobuf\text_format.py", line 1340, in ConsumeIdentifierOrNumber
    raise self.ParseError('Expected identifier or number, got %s.' % result)
': Expected identifier or number, got .1:1 : '# SSD with Inception v2 configuration for MSCOCO Dataset.

在这两种情况下, ssd_inception_v2_coco.config 文件中似乎都存在某种解析错误。我使用了错误的文件吗?这是该文件的完整列表:

# SSD with Inception v2 configuration for MSCOCO Dataset.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.

model {
    ssd {
    num_classes: 1
    box_coder {
        faster_rcnn_box_coder {
        y_scale: 10.0
        x_scale: 10.0
        height_scale: 5.0
        width_scale: 5.0
        }
    }
    matcher {
        argmax_matcher {
        matched_threshold: 0.5
        unmatched_threshold: 0.5
        ignore_thresholds: false
        negatives_lower_than_unmatched: true
        force_match_for_each_row: true
        }
    }
    similarity_calculator {
        iou_similarity {
        }
    }
    anchor_generator {
        ssd_anchor_generator {
        num_layers: 6
        min_scale: 0.2
        max_scale: 0.95
        aspect_ratios: 1.0
        aspect_ratios: 2.0
        aspect_ratios: 0.5
        aspect_ratios: 3.0
        aspect_ratios: 0.3333
        reduce_boxes_in_lowest_layer: true
        }
    }
    image_resizer {
        fixed_shape_resizer {
        height: 300
        width: 300
        }
    }
    box_predictor {
        convolutional_box_predictor {
        min_depth: 0
        max_depth: 0
        num_layers_before_predictor: 0
        use_dropout: false
        dropout_keep_probability: 0.8
        kernel_size: 3
        box_code_size: 4
        apply_sigmoid_to_scores: false
        conv_hyperparams {
            activation: RELU_6,
            regularizer {
            l2_regularizer {
                weight: 0.00004
            }
            }
            initializer {
            truncated_normal_initializer {
                stddev: 0.03
                mean: 0.0
            }
            }
        }
        }
    }
    feature_extractor {
        type: 'ssd_inception_v2_coco_2018_01_28'
        min_depth: 16
        depth_multiplier: 1.0
        conv_hyperparams {
        activation: RELU_6,
        regularizer {
            l2_regularizer {
            weight: 0.00004
            }
        }
        initializer {
            truncated_normal_initializer {
            stddev: 0.03
            mean: 0.0
            }
        }
        batch_norm {
            train: true,
            scale: true,
            center: true,
            decay: 0.9997,
            epsilon: 0.001,
        }
        }
        override_base_feature_extractor_hyperparams: true
    }
    loss {
        classification_loss {
        weighted_sigmoid {
        }
        }
        localization_loss {
        weighted_smooth_l1 {
        }
        }
        hard_example_miner {
        num_hard_examples: 3000
        iou_threshold: 0.99
        loss_type: CLASSIFICATION
        max_negatives_per_positive: 3
        min_negatives_per_image: 0
        }
        classification_weight: 1.0
        localization_weight: 1.0
    }
    normalize_loss_by_num_matches: true
    post_processing {
        batch_non_max_suppression {
        score_threshold: 1e-8
        iou_threshold: 0.6
        max_detections_per_class: 100
        max_total_detections: 100
        }
        score_converter: SIGMOID
    }
    }
}

train_config: {
    batch_size: 24
    optimizer {
    rms_prop_optimizer: {
        learning_rate: {
        exponential_decay_learning_rate {
            initial_learning_rate: 0.004
            decay_steps: 800720
            decay_factor: 0.95
        }
        }
        momentum_optimizer_value: 0.9
        decay: 0.9
        epsilon: 1.0
    }
    }
    fine_tune_checkpoint: "pre-trained-model/model.ckpt"
    from_detection_checkpoint: true
    # Note: The below line limits the training process to 200K steps, which we
    # empirically found to be sufficient enough to train the pets dataset. This
    # effectively bypasses the learning rate schedule (the learning rate will
    # never decay). Remove the below line to train indefinitely.
    num_steps: 200000
    data_augmentation_options {
    random_horizontal_flip {
    }
    }
    data_augmentation_options {
    ssd_random_crop {
    }
    }
}

train_input_reader: {
    tf_record_input_reader {
    input_path: "annotations/train.record"
    }
    label_map_path: "annotations/label_map.pbtxt"
}

eval_config: {
    metrics_set: "coco_detection_metrics"
    num_examples: 8000
    # Note: The below line limits the evaluation process to 10 evaluations.
    # Remove the below line to evaluate indefinitely.
    max_evals: 10
}

eval_input_reader: {
    tf_record_input_reader {
    input_path: "annotations/test.record"
    }
    label_map_path: "annotations/label_map.pbtxt"
    shuffle: false
    num_readers: 1
}

我下载的模型名为“ ssd_inception_vs_coco_2018_01_28”。这是我创建的其他文件的转储:

label_map.pbtxt:
item {
id: 1
name: 'car'
}

test_labels.csv:
filename,width,height,class,xmin,ymin,xmax,ymax
image-01.jpg,640,480,car,44,104,600,366
image-02.jpg,640,480,car,125,153,530,360
image-03.jpg,640,480,car,107,117,557,375
image-04.jpg,640,480,car,71,217,533,480
image-05.jpg,640,480,car,160,172,574,370
image-06.jpg,640,480,car,44,112,587,390
image-07.jpg,640,480,car,104,162,550,368
image-08.jpg,640,480,car,248,100,640,311
image-09.jpg,640,480,car,2,63,638,418
image-10.jpg,640,480,car,16,118,633,358

train_labels.csv:
image-11.jpg,640,480,car,2,25,633,457
image-12.jpg,640,480,car,136,178,474,338
image-13.jpg,640,480,car,121,71,611,344
image-14.jpg,640,480,car,61,114,569,361
image-15.jpg,640,480,car,79,149,389,403
image-15.jpg,640,480,car,393,181,602,285
image-16.jpg,640,480,car,65,161,591,375
image-17.jpg,640,480,car,2,132,316,300
image-17.jpg,640,480,car,321,134,640,451
image-18.jpg,640,480,car,200,272,428,374
image-19.jpg,640,480,car,1,71,630,420
image-20.jpg,640,480,car,200,129,462,365
image-21.jpg,640,480,car,5,41,640,452
image-22.jpg,640,480,car,260,180,422,295
image-23.jpg,640,480,car,37,54,591,390
image-24.jpg,640,480,car,89,155,602,409
image-25.jpg,640,480,car,52,107,591,381
image-26.jpg,640,480,car,2,1,584,451
image-27.jpg,640,480,car,13,84,599,403
image-28.jpg,640,480,car,194,135,636,384
image-29.jpg,640,480,car,3,33,639,451
image-30.jpg,640,480,car,83,104,584,389
image-31.jpg,640,480,car,59,68,581,477
image-32.jpg,640,480,car,45,104,597,367
image-33.jpg,640,480,car,131,163,530,358
image-34.jpg,640,480,car,102,119,560,377
image-35.jpg,640,480,car,159,172,574,372
image-36.jpg,640,480,car,45,100,584,392
image-37.jpg,640,480,car,102,160,546,367
image-38.jpg,640,480,car,2,106,637,416
image-39.jpg,640,480,car,20,118,626,360
image-40.jpg,640,480,car,2,25,633,461
image-41.jpg,640,480,car,140,180,471,338
image-42.jpg,640,480,car,60,110,570,360
image-43.jpg,640,480,car,74,151,390,397
image-43.jpg,640,480,car,391,183,600,284
image-44.jpg,640,480,car,2,134,317,298
image-45.jpg,640,480,car,203,268,426,377
image-46.jpg,640,480,car,2,72,628,417
image-47.jpg,640,480,car,202,130,459,357
image-49.jpg,640,480,car,2,30,639,450
image-50.jpg,640,480,car,262,180,423,294
image-51.jpg,640,480,car,41,62,585,388
image-53.jpg,640,480,car,87,156,599,407

0 个答案:

没有答案