我在TensorFlow中有一些列数据,我想对其中一列进行过滤,如下所示:
const categories = [
{ category: 'Patch Leads', solution: 'Data Solutions' },
{ category: 'Cables', solution: 'Data Solutions' },
{ category: 'Nails', solution: 'Hardware' },
{ category: 'Locks', solution: 'Hardware' },
{ category: 'Screws', solution: 'Hardware' },
{ category: 'Cabinets', solution: 'Cabinet Solutions' },
{ category: 'Swing Frames', solution: 'Cabinet Solutions' },
{ category: 'Racks', solution: 'Cabinet Solutions' },
{ category: 'Fire Cables', solution: 'Fire Solutions' },
];
class category{
constructor(id,name){
this.id = id;
this.name = name;
this.slug = name;
}
}
class NewOne {
constructor(id,name,categories=[]) {
this.id = id;
this.name = name;
this.categories = categories;
}
}
let solutions = [];
solutions.push(new NewOne(0, categories[0].solution,[new category(0,categories[0].category)]));
let newArrayIndex = 0;
let idPlusOne = 1;
for(index in categories){
if(solutions[newArrayIndex].name !== categories[index].solution){
solutions.push(new NewOne(index, categories[index].solution,[new category(0,categories[index].category)]));
newArrayIndex++;
idPlusOne=1;
}else{
solutions[newArrayIndex].categories.push(new category(idPlusOne,categories[index].category));
idPlusOne++;
}
}
但这会产生错误消息:
ValueError:
import pandas as pd import tensorflow.compat.v2 as tf import tensorflow.compat.v1 as tfv1 tfv1.enable_v2_behavior() csv_file = tf.keras.utils.get_file('heart.csv', 'https://storage.googleapis.com/applied-dl/heart.csv') df = pd.read_csv(csv_file) target = df.pop('target') df['thal'] = pd.Categorical(df['thal']) df['thal'] = df.thal.cat.codes # Use interleave() and prefetch() to read many files concurrently. #files = tf.data.Dataset.list_files(file_pattern=input_file_pattern, shuffle=True, seed=123456789) #dataset = files.interleave(lambda x: tf.data.RecordIODataset(x).prefetch(100), cycle_length=8) #Pretend I actually had some data files dataset = tf.data.Dataset.from_tensor_slices((df.to_dict('list'), target.values)) dataset = dataset.shuffle(1000, seed=123456789) dataset = dataset.batch(20) #Pretend I did some parsing here # dataset = dataset.map(parse_record, num_parallel_calls=20) dataset = dataset.filter(lambda x, label: x['trestbps']<135)
返回类型必须可转换为标量布尔张量。是predicate
。
我该怎么过滤数据?
答案 0 :(得分:1)
这是因为您在filter
之后加上了batch
。
因此,在lambda
表达式中,x
是形状为(None,)
的批处理(将drop_reminder=True
传递到batch
以获得(20,)
的形状),而不是样本。要解决此问题,您必须在filter
之前致电batch
。
有一种解决方案,可以在batch
之后使用map
进行“过滤”。但是,正如您所看到的,这具有使批量变量大小变大的副作用:您在输入中获得了20个批次,并且删除了不符合特定条件的元素(trestbps <135),而没有从中删除相同数量的元素每批。而且,此解决方案的效果非常差...
import timeit
import pandas as pd
import tensorflow.compat.v2 as tf
import tensorflow.compat.v1 as tfv1
tfv1.enable_v2_behavior()
def s1(ds):
dataset = ds
dataset = dataset.filter(lambda x, label: x['trestbps']<135)
dataset = dataset.batch(20)
return dataset
def s2(ds):
dataset = ds
dataset = dataset.batch(20)
dataset = dataset.map(lambda x, label: (tf.nest.map_structure(lambda y: y[x['trestbps'] < 135], x), label[x['trestbps'] < 135]))
return dataset
def base_ds():
csv_file = tf.keras.utils.get_file('heart.csv', 'https://storage.googleapis.com/applied-dl/heart.csv')
df = pd.read_csv(csv_file)
target = df.pop('target')
df['thal'] = pd.Categorical(df['thal'])
df['thal'] = df.thal.cat.codes
return tf.data.Dataset.from_tensor_slices((df.to_dict('list'), target.values))
def main():
ds = base_ds()
ds1 = s1(ds)
ds2 = s2(ds)
tf.print("DS_S1:", [tf.nest.map_structure(lambda x: x.shape, x) for x in ds1])
tf.print("DS_S2:", [tf.nest.map_structure(lambda x: x.shape, x) for x in ds2])
tf.print("Are equals?", [x for x in ds1] == [x for x in ds2])
tf.print("Contains same elements?", [x for x in ds1.unbatch()] == [x for x in ds2.unbatch()])
tf.print("Filter and batch:", timeit.timeit(lambda: s1(ds), number=100))
tf.print("Batch and map:", timeit.timeit(lambda: s2(ds), number=100))
if __name__ == '__main__':
main()
结果:
# Tensor shapes
[...]
Are equals? False
Contains same elements? True
Filter and batch: 0.5571189750007761
Batch and map: 15.582061060000342
种类