我正在用Pytorch训练NN,以预测Boston dataset的预期价格。 网络看起来像这样:
from sklearn.datasets import load_boston
from torch.utils.data.dataset import Dataset
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch
import torch.nn as nn
import torch.optim as optim
class Net(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(13, 128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, 32)
self.fc4 = nn.Linear(32, 16)
self.fc5 = nn.Linear(16,1)
def forward(self, x):
x = self.fc1(x)
x = self.fc2(x)
x = F.relu(x)
x = self.fc3(x)
x = F.relu(x)
x = self.fc4(x)
x = F.relu(x)
return self.fc5(x)
还有数据加载器:
class BostonData(Dataset):
__xs = []
__ys = []
def __init__(self, train = True):
df = load_boston()
index = int(len(df["data"]) * 0.7)
if train:
self.__xs = df["data"][0:index]
self.__ys = df["target"][0:index]
else:
self.__xs = df["data"][index:]
self.__ys = df["target"][index:]
def __getitem__(self, index):
return self.__xs[index], self.__ys[index]
def __len__(self):
return len(self.__xs)
在我的第一次尝试中,我没有添加 ReLU 单位,但是经过一番研究,我发现添加它们是一种常见的做法,但对我而言却没有奏效。
这是培训代码:
dset_train = BostonData(train = True)
dset_test = BostonData(train = False)
train_loader = DataLoader(dset_train, batch_size=30, shuffle=True)
test_loader = DataLoader(dset_train, batch_size=30, shuffle=True)
optimizer = optim.Adam(net.parameters(), lr = 0.001)
criterion = torch.nn.MSELoss()
EPOCHS = 10000
lloss = []
for epoch in range(EPOCHS):
for trainbatch in train_loader:
X,y = trainbatch
net.zero_grad()
output = net(X.float())
loss = criterion(output, y)
loss.backward()
optimizer.step()
lloss.append(loss)
print(loss)
历经10k之后,损耗图如下所示
我没有看到任何明显的减少。
我不知道我是在搞混torch.nn.MSELoss()
,optimizer
还是网络拓扑,所以将不胜感激。
编辑:
改变学习速度和规范化数据对我不起作用。我添加了行self.__xs = (self.__xs - self.__xs.mean()) / self.__xs.std()
和对lr = 0.01
的更改。损失图与第一个非常相似。
lr = 0.01的相同图并在1000个历元后归一化:
答案 0 :(得分:2)
您每个时期追加一次lloss
,并且正确,但是您追加了loss
(仅使用最后一批),而您应该追加avg_train_loss
尝试:
for epoch in range(EPOCHS):
avg_train_loss = 0
for trainbatch in train_loader:
X,y = trainbatch
net.zero_grad()
output = net(X.float())
loss = criterion(output, y)
loss.backward()
optimizer.step()
avg_train_loss += loss.item() / len(train_loader)
lloss.append(avg_train_loss)