要在TfLite中使用LSTM,我需要将Lambda层重写为tf keras自定义Layer对象,以便它可以容纳权重(因为Lambda层无法做到这一点)。我不太确定如何使用此处的示例。谁能帮助我,并向我展示如何正确地重写为custom layer?
def buildLstmLayer(inputs):
lstm_cells = []
lstm_cells.append(TFLiteLSTMCell(256, forget_bias=0, name='rnn0'))
lstm_cells.append(TFLiteLSTMCell(128, forget_bias=0, name='rnn1'))
lstm_layers = tf.keras.layers.StackedRNNCells(lstm_cells)
outputs, _ = dynamic_rnn(
lstm_layers,
inputs,
dtype='float32',
time_major=True)
return outputs