处理非结构化数据-Python Panda

时间:2019-10-08 16:26:03

标签: python pandas

我得到了使用pdf,文本和word文件创建的以下数据表。我已经使用基于字典的方法将各种标头分类到模块中。现在,我需要从句子中获取值并获得结构化的数据。

当前,这是数据的外观:

header                      Module
ADDITIONAL BONUS            Payroll Pay Element
EMPLOYEE ID: 4564576        Employee ID
AMOUNT: 1200 USD            Amount
EMPLOYEE NAME: ANDY CHEN    Employee Name
SPOT AWARD                  Payroll Pay Element
EMPLOYEE ID: 7463453        Employee ID
AMOUNT: 200 USD             Amount
EMPLOYEE NAME: MICHAEL HISHAM      Employee Name
REALOCATION BONUS           Payroll Pay Element
EMPLOYEE ID: 7467673        Employee ID
AMOUNT: 1400 USD            Amount
EMPLOYEE NAME: AYMAN HISHAM Employee Name
REALOCATION BONUS           Payroll Pay Element
EMPLOYEE ID: 7467673        Employee ID
AMOUNT: 1400 USD            Amount
EMPLOYEE NAME: AYMAN HISHAM Employee Name

不确定如何以如下所示的结构化格式实现所需的输出:

Employee ID Employee Name   Payroll Pay Element Amount
4564576 ANDY CHEN   ADDITIONAL BONUS    1200 USD
7463453 MICHAEL HISHAM  SPOT AWARD  200 USD
7467673 AYMAN HISHAM    REALOCATION BONUS   1400 USD
7467673 AYMAN HISHAM    REALOCATION BONUS   1400 USD

我用来从各种文档中获取第一个表格数据的跟踪代码。

import re,os, subprocess,  pandas as pd, numpy as np
from nltk.util import ngrams
from nltk.tokenize import word_tokenize
import nltk


####################################PATH TO SAVE FILES###########################################
os.chdir(r"C:\Analytics\Microsoft\One_Time_Payment")

###################Converting CVs from Various format to txt Format ###########

path_PDF = r"\pdf"
path_DOC = r"\word"
path_TXT = r"\txt"
path_ERROR=r"\ERROR"

try:
    with subprocess.Popen([os.path.join(path_DOC, "docto.exe"), '-f', path_DOC, '-O', path_TXT,'-T','wdFormatTEXT'], stdout=subprocess.PIPE) as proc:
            print(proc.stdout.read()) 
except Exception:
        pass


all_pdf = os.listdir(path_PDF)

for each_file in all_pdf:                                                                                                                                      
    print("DEL : ",each_file)
    print("Test above")
    if each_file.endswith('.pdf'):
#        cnd_id =                                                                                            (re.findall('\d+', each_file ))
        txt_filename = each_file.partition('.')[0] + ".txt"
        subprocess.call([os.path.join(path_PDF, "pdftotext.exe"), '-raw', '-eol', 'dos','-layout',
        os.path.join(path_PDF, each_file),
        os.path.join(path_TXT, txt_filename)])



#####################Processing texts ###########################################

counter = 1

all_text = os.listdir(path_TXT)
#all_text = [os.path.splitext(filename)[0] for filename in os.listdir(path_TXT)]

# only in case extra file is gettign created

#error_file=pd.DataFrame(index=['sno'],columns=['msg'])


for each_file in all_text:

    try:
        print(os.path.join(path_TXT, each_file))
        inpdata = pd.read_table(os.path.join(path_TXT, each_file), header=None,encoding = "ISO-8859-1",sep='\n')
#        cnd_id = (re.findall('\d{6}', each_file ))
    except Exception as e1:
        try:
            inpdata = pd.read_table(os.path.join(path_TXT, each_file), header=None, engine='python',encoding = "ISO-8859-1",sep='\n',error_bad_lines=False)
        except Exception as ec:
            print("Python Engine E ::>> ",ec)
            str_err = "Could not process the file %s" % (each_file)
            print(str_err)
            continue         
#            try:
#                inpdata = pd.read_table(os.path.join(path_TXT, each_file), header=None,encoding = "ISO-8859-1",sep='\n', error_bad_lines=False)
#            except Exception as ec:


#                error_file["msg"]=str_err


    inpdata.columns = ["Sentences"]
    inpdata['Sentences'] = inpdata['Sentences'].str.upper()
#    inpdata['Module'] = ''
    inpdata_bck = inpdata
    inpdata_bck['sent_id'] = range(0,len(inpdata_bck))
#    inpdata_bck['cnd_id'] = str(cnd_id)
#    inpdata['num_words'] = 0
    inpdata['CID'] =   each_file.partition('.')[0]
    inpdata.dropna(subset=["Sentences"], inplace=True)
    inpdata = inpdata.reset_index()
    del inpdata['index']

    inpdata_bck.to_csv(each_file + '.csv')
    if (counter==1):
        all_info = inpdata
#        err_file=error_file
#        err_file1=error_file1
    else:
        all_info = pd.concat([all_info,inpdata])
#        err_file=pd.concat([err_file,error_file])
#        err_file1=pd.concat([err_file1,error_file1])
    counter = counter + 1   

#Removing Special Characteres to avoid import #Name issue
all_info['Sentences']= all_info['Sentences'].map(lambda x: x.lstrip('+-'))
all_info = all_info.reset_index() 

del all_info['index']  


mod = pd.read_excel(r"Payroll_dict.xlsx", sheetname='Payroll Dictionary') 

all_info['num_words'] = 0  
all_info['Module'] = ''
all_info = all_info[pd.notnull(all_info['Sentences'])]
all_info = all_info.reset_index()
del all_info['index']

categoryDict = {}
modules = list(set(mod['Module']))
for module in modules:
    categoryDict[module] = mod.loc[mod['Module'] == module, 'Header']





#Function for Module Assignment
def module_assign(inpdata):


######################### Module Creation ##############################  

    curr_sent_value=inpdata['Sentences']
    if inpdata['num_words'] <= 0:
        list1=["EMPLOYEE ID:", "REFERENCE ID"]
        if curr_sent_value in list1:
          return 'Employee ID'

        list2=["Amount", "AMOUNTS"]
        if curr_sent_value in list2:
          return 'Amount'     
    else:
           for key in categoryDict.keys():
                for word in categoryDict[key]:
                    match = re.findall(word,curr_sent_value,re.I|re.M)
                    if len(match)>0:
                        return key

for CID, cid_data in all_info.groupby('CID'):
    inpdata=all_info
    inpdata = inpdata.reset_index()
#    del inpdata['index']
    inpdata['header'] = " "
#    inpdata['clean_sent']=inpdata['Sentences'].map(reg_clean)
    inpdata['num_words']=inpdata['Sentences'].map(lambda x: len(x.split()))
    inpdata['header']=np.where(inpdata['num_words']<=5,inpdata['Sentences'],'')
    inpdata = inpdata[inpdata['num_words'] > 0]
    inpdata['Module']=inpdata.apply(module_assign,axis=1)

    def split_the_sentence_to_words_rem_stopwrds(p_sentence):
     return [token for token in word_tokenize(p_sentence)]


inpdata['split_wrd'] =inpdata['Sentences'].map(split_the_sentence_to_words_rem_stopwrds)

1 个答案:

答案 0 :(得分:1)

您可以旋转表格并去除字符串:

new_df = df.pivot_table(index=df.Module.eq('Payroll Pay Element').cumsum(),
               columns='Module',
               values='header',
               aggfunc='first')

for col in ['Amount','Employee ID', 'Employee Name']:
    new_df[col] = new_df[col].str[len(col)+1:]

print(new_df)

输出:

Module     Amount Employee ID    Employee Name Payroll Pay Element
Module                                                            
1        1200 USD     4564576        ANDY CHEN    ADDITIONAL BONUS
2         200 USD     7463453   MICHAEL HISHAM          SPOT AWARD
3        1400 USD     7467673     AYMAN HISHAM   REALOCATION BONUS
4        1400 USD     7467673     AYMAN HISHAM   REALOCATION BONUS