我正在尝试展平JSON文件,以便能够将其全部加载到AWS Glue中的PostgreSQL中。我正在使用PySpark。使用搜寻器搜寻S3 JSON并生成一个表。然后,我使用ETL Glue脚本执行以下操作:
到目前为止的脚本:
datasource0 = glueContext.create_dynamic_frame.from_catalog(database = glue_source_database, table_name = glue_source_table, transformation_ctx = "datasource0")
df0 = Relationalize.apply(frame = datasource0, staging_path = glue_temp_storage, name = dfc_root_table_name, transformation_ctx = "dfc")
df1 = df0.select(dfc_root_table_name)
df2 = df1.toDF()
df2 = df1.select(explode(col('`request.data`')).alias("request_data"))
<then i write df1 to a PostgreSQL database which works fine>
我面对的问题:
“ relationalize”功能运行良好,但request.data字段变为bigint,因此“ explode”不起作用。
由于数据的结构,如果不首先在JSON上使用'Relationalize',就无法进行爆炸。具体的错误是:“ org.apache.spark.sql.AnalysisException:由于数据类型不匹配而无法解析'explode(request.data
)':函数explode的输入应该是数组或映射类型,而不是bigint” >
如果我尝试首先将动态框架设为数据框架,则会出现以下问题:“ py4j.protocol.Py4JJavaError:调用o72.jdbc时发生错误。 :java.lang.IllegalArgumentException:无法获取结构的JDBC类型...”
我还尝试上传一个分类器,以使数据在爬网本身中变平,但是AWS确认这是行不通的。
原始文件的JSON格式如下,我试图对其进行标准化:
- field1
- field2
- {}
- field3
- {}
- field4
- field5
- []
- {}
- field6
- {}
- field7
- field8
- {}
- field9
- {}
- field10
答案 0 :(得分:0)
一旦您合理化了json列,就无需爆炸它。 Relationalize将嵌套的JSON转换为JSON文档最外层的键/值对。转换后的数据会维护嵌套JSON中原始关键字的列表,并以句点分隔。
示例:
嵌套json:
{
"player": {
"username": "user1",
"characteristics": {
"race": "Human",
"class": "Warlock",
"subclass": "Dawnblade",
"power": 300,
"playercountry": "USA"
},
"arsenal": {
"kinetic": {
"name": "Sweet Business",
"type": "Auto Rifle",
"power": 300,
"element": "Kinetic"
},
"energy": {
"name": "MIDA Mini-Tool",
"type": "Submachine Gun",
"power": 300,
"element": "Solar"
},
"power": {
"name": "Play of the Game",
"type": "Grenade Launcher",
"power": 300,
"element": "Arc"
}
},
"armor": {
"head": "Eye of Another World",
"arms": "Philomath Gloves",
"chest": "Philomath Robes",
"leg": "Philomath Boots",
"classitem": "Philomath Bond"
},
"location": {
"map": "Titan",
"waypoint": "The Rig"
}
}
}
合理化后整理出json:
{
"player.username": "user1",
"player.characteristics.race": "Human",
"player.characteristics.class": "Warlock",
"player.characteristics.subclass": "Dawnblade",
"player.characteristics.power": 300,
"player.characteristics.playercountry": "USA",
"player.arsenal.kinetic.name": "Sweet Business",
"player.arsenal.kinetic.type": "Auto Rifle",
"player.arsenal.kinetic.power": 300,
"player.arsenal.kinetic.element": "Kinetic",
"player.arsenal.energy.name": "MIDA Mini-Tool",
"player.arsenal.energy.type": "Submachine Gun",
"player.arsenal.energy.power": 300,
"player.arsenal.energy.element": "Solar",
"player.arsenal.power.name": "Play of the Game",
"player.arsenal.power.type": "Grenade Launcher",
"player.arsenal.power.power": 300,
"player.arsenal.power.element": "Arc",
"player.armor.head": "Eye of Another World",
"player.armor.arms": "Philomath Gloves",
"player.armor.chest": "Philomath Robes",
"player.armor.leg": "Philomath Boots",
"player.armor.classitem": "Philomath Bond",
"player.location.map": "Titan",
"player.location.waypoint": "The Rig"
}
因此,在您的情况下, request.data 已经是从请求列中拉平的新列,其类型被spark解释为bigint。
参考:Simplify/querying nested json with the aws glue relationalize transform
答案 1 :(得分:0)
# Flatten nested df
def flatten_df(nested_df):
for col in nested_df.columns:
array_cols = [c[0] for c in nested_df.dtypes if c[1][:5] == 'array']
for col in array_cols:
nested_df =nested_df.withColumn(col, F.explode_outer(nested_df[col]))
nested_cols = [c[0] for c in nested_df.dtypes if c[1][:6] == 'struct']
if len(nested_cols) == 0:
return nested_df
flat_cols = [c[0] for c in nested_df.dtypes if c[1][:6] != 'struct']
flat_df = nested_df.select(flat_cols +
[F.col(nc+'.'+c).alias(nc+'_'+c)
for nc in nested_cols
for c in nested_df.select(nc+'.*').columns])
return flatten_df(flat_df)
df=flatten_df(df)
它将用下划线替换所有点。请注意,在数组本身为null的情况下,它使用explode_outer
而不是explode
来包含Null值。此功能仅在spark v2.4+
中可用。
还请记住,爆炸数组将添加更多重复项,并且总行大小将增加。展平结构会增加列大小。简而言之,原始df会水平和垂直爆炸。稍后可能会减慢数据处理速度。
因此,我的建议是识别与功能相关的数据,并将这些数据仅存储在PostgreSQL和s3中的原始json文件中。