np.logical_or
与functools.reduce
返回不同的结果。
kdf = pd.DataFrame(data={'col1' : [' False', 1, np.nan], 'dt': [datetime.now(), ' 2018-12-12', '2019-12-12'], 'bool':
[False, True, True], 'i': [1,2,'3'], 'bnan': [False, True, np.nan], 'col2': [' True ', False, 'False']})
print([kdf[i].str.contains('^\s*F') for i in ['col1', 'col2']])
# [0 True
# 1 NaN
# 2 NaN
# Name: col1, dtype: object, 0 False
# 1 NaN
# 2 True
# Name: col2, dtype: object]
您可能会看到它返回了预期的输出,但是当我们用np.logical_or
重用它时,它将为第三行而不是Nan
返回True
from functools import reduce
reduce(np.logical_or, [kdf[i].str.contains('^\s*F') for i in ['col1', 'col2']])
# 0 True
# 1 NaN
# 2 NaN
# dtype: object
但是np.logical_or(np.nan, True)
返回True
。我希望reduce将功能应用于所有列表项,即
kdf['col1'].str.contains('^\s*F') | kdf['col2'].str.contains('^\s*F')
我想念什么吗?
答案 0 :(得分:1)
我认为这是一个错误,要正确处理NaN,应将其替换为一些布尔值,例如通过False
参数移至na=False
:
from functools import reduce
a = reduce(np.logical_or, [kdf[i].str.contains('^\s*F') for i in ['col1', 'col2']])
print (a)
0 True
1 NaN
2 NaN
dtype: object
b = np.logical_or.reduce([kdf[i].str.contains('^\s*F') for i in ['col1', 'col2']])
print (b)
[True nan nan]
c = kdf['col1'].str.contains('^\s*F') | kdf['col2'].str.contains('^\s*F')
print (c)
0 True
1 False
2 False
dtype: bool
from functools import reduce
a = reduce(np.logical_or, [kdf[i].str.contains('^\s*F', na=False) for i in ['col1', 'col2']])
print (a)
0 True
1 False
2 True
dtype: bool
b = np.logical_or.reduce([kdf[i].str.contains('^\s*F', na=False) for i in ['col1', 'col2']])
print (b)
[ True False True]
c = kdf['col1'].str.contains('^\s*F', na=False) | kdf['col2'].str.contains('^\s*F', na=False)
print (c)
0 True
1 False
2 True
dtype: bool