我正在运行一个python程序,以使用API从DarkSky天气网站获取天气数据。 截至目前,我通过一次获取纬度和经度来一次获取一个位置的数据。
我想要的是...我想一次给出2-4个位置,我的代码应该获取我在代码中提到的所有Location(latitude, longitude)
的数据
import os
import warnings
import requests
import pandas as pd
import numpy as np
from darksky import forecast
from datetime import datetime
from tqdm import tqdm
def ping_darksky(time, key):
WeatherData = forecast(key, *Location, time=day.isoformat())
fetch = {
'day': time,
'windSpeed': WeatherData["daily"]["data"][0].get('windSpeed', np.nan),
'windGust': WeatherData["daily"]["data"][0].get('windGust', np.nan),
'windBearing': WeatherData["daily"]["data"][0].get('windBearing', np.nan)}
return fetch
def switch_key():
with open("secret_key.txt", 'r') as key_file:
api_keys = key_file.read().splitlines()
for api_key in api_keys:
yield api_key
#38.9072, 77.0369(DC)
#40.3029, 74.7337(Mercer)
#39.1547, 77.2405(Montgomery)
#40.1461, 82.4753(Licking)
# Define location(Lat & Long).
Location = (40.1461, -82.4753)
# Set up dataframe and path to which it will be saved.
COLUMNS = ["day", "windSpeed", "windGust"]
WEATHER_Location = pd.DataFrame(columns=COLUMNS)
DATAOUT = os.path.join("data", "weather_WeatherData_daily.csv")
# Define start variables for the loop.
##YYYY, MM,DD
START = datetime(2018,1,27)
KEYGEN = switch_key()
KEY = next(KEYGEN)
if __name__ == "__main__":
print("Start data collection.")
for day in tqdm(pd.date_range(START, periods=190)):
try:
row = ping_darksky(key=KEY, time=day)
WEATHER_Location = WEATHER_Location.append(row, ignore_index=True)
# If the server refuses to connect, change the key.
except requests.exceptions.HTTPError:
try:
KEY = next(KEYGEN)
row = ping_darksky(key=KEY, time=day)
WEATHER_Location = WEATHER_Location.append(row, ignore_index=True)
continue
# If there are no keys left, break the loop prematurely.
except StopIteration:
warnings.warn(
"End of keys reached. Your dataset might be incomplete.")
break
# Save data in each iteration.
# This way you should end up with something at least.
finally:
WEATHER_Location.to_csv(DATAOUT)
print("Wrote {} rows".format(WEATHER_Location.shape[0]))
答案 0 :(得分:0)
您可以:
并通过使用其中的值来调用相关函数。 使用清单:
#locations = [[40.1461, -82.4753],[123, 213],........]
locations = [[40.1461, -82.4753],[123, 213]]
def ping_darksky(time, key):
for location in locations:
WeatherData = forecast(key, location, time=day.isoformat())
fetch = {
'day': time,
'windSpeed': WeatherData["daily"]["data"][0].get('windSpeed', np.nan),
'windGust': WeatherData["daily"]["data"][0].get('windGust', np.nan),
'windBearing': WeatherData["daily"]["data"][0].get('windBearing', np.nan
#here add up the data and finally return
print(fetch)
使用字典:
locations = {40.1461: -82.4753, 123: 213}
for key,value in dicta.items():
WeatherData = forecast(key, *[key, value], time=day.isoformat())
但是,如果预测功能需要列表,则最好选择列表。
答案 1 :(得分:0)
我会将位置存储在元组的字典(又称为哈希图)中,并在键上循环
locations = {"DC":(38.9072, 77.0369), "Mercer":(40.3029, 74.7337), "Montgomery":(39.1547, 77.2405), "Licking":(40.1461, 82.4753)}
for key in locations.keys():
location = locations[key]
<YOUR MAIN CODE>
我会使用字典,以便将来如果需要,可以通过名称选择位置