我才刚刚开始探索AI,却从未使用过Tensorflow,即使Linux对我来说还是新的。
我以前已经安装了NVIDIA Driver430。它随CUDA 10.1一起提供
由于Tensorflow-gpu 1.14不支持CUDA 10.1,因此我卸载了CUDA 10.1,并下载了CUDA 10.0
cuda_10.0.130_410.48_linux.run
安装后我就跑
nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2018 NVIDIA Corporation
Built on Sat_Aug_25_21:08:01_CDT_2018
Cuda compilation tools, release 10.0, V10.0.130
当我尝试在Jupyter Notebook中使用GPU时,代码仍然不起作用
import tensorflow as tf
with tf.device('/gpu:0'):
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
with tf.Session() as sess:
print (sess.run(c))
错误:
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
~/anaconda3/lib/python3.7/site-packages/tensorflow/python/client/session.py in _do_call(self, fn, *args)
1355 try:
-> 1356 return fn(*args)
1357 except errors.OpError as e:
~/anaconda3/lib/python3.7/site-packages/tensorflow/python/client/session.py in _run_fn(feed_dict, fetch_list, target_list, options, run_metadata)
1338 # Ensure any changes to the graph are reflected in the runtime.
-> 1339 self._extend_graph()
1340 return self._call_tf_sessionrun(
~/anaconda3/lib/python3.7/site-packages/tensorflow/python/client/session.py in _extend_graph(self)
1373 with self._graph._session_run_lock(): # pylint: disable=protected-access
-> 1374 tf_session.ExtendSession(self._session)
1375
InvalidArgumentError: Cannot assign a device for operation MatMul: {{node MatMul}}was explicitly assigned to /device:GPU:0 but available devices are [ /job:localhost/replica:0/task:0/device:CPU:0, /job:localhost/replica:0/task:0/device:XLA_CPU:0, /job:localhost/replica:0/task:0/device:XLA_GPU:0 ]. Make sure the device specification refers to a valid device.
[[MatMul]]
During handling of the above exception, another exception occurred:
InvalidArgumentError Traceback (most recent call last)
<ipython-input-19-3a5be606bcc9> in <module>
6
7 with tf.Session() as sess:
----> 8 print (sess.run(c))
~/anaconda3/lib/python3.7/site-packages/tensorflow/python/client/session.py in run(self, fetches, feed_dict, options, run_metadata)
948 try:
949 result = self._run(None, fetches, feed_dict, options_ptr,
--> 950 run_metadata_ptr)
951 if run_metadata:
952 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
~/anaconda3/lib/python3.7/site-packages/tensorflow/python/client/session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
1171 if final_fetches or final_targets or (handle and feed_dict_tensor):
1172 results = self._do_run(handle, final_targets, final_fetches,
-> 1173 feed_dict_tensor, options, run_metadata)
1174 else:
1175 results = []
~/anaconda3/lib/python3.7/site-packages/tensorflow/python/client/session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
1348 if handle is None:
1349 return self._do_call(_run_fn, feeds, fetches, targets, options,
-> 1350 run_metadata)
1351 else:
1352 return self._do_call(_prun_fn, handle, feeds, fetches)
~/anaconda3/lib/python3.7/site-packages/tensorflow/python/client/session.py in _do_call(self, fn, *args)
1368 pass
1369 message = error_interpolation.interpolate(message, self._graph)
-> 1370 raise type(e)(node_def, op, message)
1371
1372 def _extend_graph(self):
InvalidArgumentError: Cannot assign a device for operation MatMul: node MatMul (defined at <ipython-input-9-b145a02709f7>:5) was explicitly assigned to /device:GPU:0 but available devices are [ /job:localhost/replica:0/task:0/device:CPU:0, /job:localhost/replica:0/task:0/device:XLA_CPU:0, /job:localhost/replica:0/task:0/device:XLA_GPU:0 ]. Make sure the device specification refers to a valid device.
[[MatMul]]
Errors may have originated from an input operation.
Input Source operations connected to node MatMul:
b (defined at <ipython-input-9-b145a02709f7>:4)
a (defined at <ipython-input-9-b145a02709f7>:3)
但是,如果我在Python的Terminal中运行了此代码,它将起作用。我可以看到输出
[[22。 28.] [49。 64。]]
答案 0 :(得分:1)
您需要确保已安装相应的CUDA
和CuDNN
版本。
CuDNN
版本:How to verify CuDNN installation?
cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
CUDA
的版本:xcat.docs
nvcc -V
nvidia-smi
xla_gpu
的信息
CUDA
的{{1}}会调用CuDNN
s gpu
s。 Nvidia GPU需要CUDA和CuDNN才能与Tensorflow一起正常工作,因此tensorflow似乎正在尝试使用自己的库在GPU上进行计算。但是,我不确定。