对于这个问题,我想采用类似的方法Select DataFrame rows between two dates 但有时间范围。
我有一个有关餐厅订单的数据集,其中包含时间和订单类型。早餐,午餐和晚餐都有时间间隔。
时间间隔:
早餐:(8:00:00-12:00:00)午餐:(12:00:01-16:00:00)晚餐: (16:00:01-20:00:00)
数据集示例:
order_type time
0 Lunch 13:24:30
1 Dinner 18:28:43
2 Dinner 17:17:44
3 Lunch 15:46:28
4 Lunch 12:33:48
5 Lunch 15:26:11
6 Lunch 13:04:13
7 Lunch 12:13:31
8 Breakfast 08:20:16
9 Breakfast 08:10:08
10 Dinner 18:08:27
11 Breakfast 10:42:15
12 Dinner 19:09:17
13 Dinner 18:28:43
14 Breakfast 09:21:07
我的time
列最初是object
类型,我将其转换为timedelta64[ns]
。
我想创建三个时间范围,每个order_type
一个。然后使用它们来验证我的数据集的准确性。
当我拥有这三个范围时,我可以运行类似下面的for loop
:
for order in dirtyData['order_type']:
for time in dirtyData['time']:
if order=='Breakfast' and time not in BreakfastRange:
*do something*
我提到了documentation和这个post。应用between_time
,但我一直遇到错误。
答案 0 :(得分:2)
您可以使用pd.cut
:
# threshold for time range
bins = pd.to_timedelta(['8:00:00', '12:00:00', '16:00:00', '20:00:00'])
# cut:
df['order_type_gt'] = pd.cut(df['time'],
bins,
labels=['Breakfast','Lunch', 'Dinner'],
include_lowest=True)
输出:
order_type time order_type_gt
0 Lunch 13:24:30 Lunch
1 Dinner 18:28:43 Dinner
2 Dinner 17:17:44 Dinner
3 Lunch 15:46:28 Lunch
4 Lunch 12:33:48 Lunch
5 Lunch 15:26:11 Lunch
6 Lunch 13:04:13 Lunch
7 Lunch 12:13:31 Lunch
8 Breakfast 08:20:16 Breakfast
答案 1 :(得分:2)
我们可以使用pd.cut
,然后只需将输出与原始order_type
匹配
pd.cut(df.time,pd.to_timedelta(['00:00:00','12:00:00','16:00:00','23:59:59']),labels=['B','L','D'])